Publications by authors named "Scott Alper"

Inflammation driven by Toll-like receptor (TLR) signaling pathways is required to combat infection. However, inflammation can damage host tissues; thus it is essential that TLR signaling ultimately is terminated to prevent chronic inflammatory disorders. One mechanism that terminates persistent TLR signaling is alternative splicing of the MyD88 signaling adaptor, which functions in multiple TLR signaling pathways.

View Article and Find Full Text PDF

Myelodysplastic neoplasm (MDS) is a hematopoietic stem cell disorder that may evolve into acute myeloid leukemia. Fatal infection is among the most common cause of death in MDS patients, likely due to myeloid cell cytopenia and dysfunction in these patients. Mutations in genes that encode components of the spliceosome represent the most common class of somatically acquired mutations in MDS patients.

View Article and Find Full Text PDF

Polymeric microparticles are promising biomaterial platforms for targeting macrophages in the treatment of disease. This study investigates microparticles formed by a thiol-Michael addition step-growth polymerization reaction with tunable physiochemical properties and their uptake by macrophages. The hexafunctional thiol monomer dipentaerythritol hexa-3-mercaptopropionate (DPHMP) and tetrafunctional acrylate monomer di(trimethylolpropane) tetraacrylate (DTPTA) were reacted in a stepwise dispersion polymerization, achieving tunable monodisperse particles over a size range (1-10 μm) relevant for targeting macrophages.

View Article and Find Full Text PDF

While inflammation induced by Toll-like receptor (TLR) signaling is required to combat infection, persistent inflammation can damage host tissues and contribute to a myriad of acute and chronic inflammatory disorders. Thus, it is essential not only that TLR signaling be activated in the presence of pathogens but that TLR signaling is ultimately terminated. One mechanism that limits persistent TLR signaling is alternative pre-mRNA splicing.

View Article and Find Full Text PDF

Poly(ethylene glycol) (PEG) hydrogels hold promise for in vivo applications but induce a foreign body response (FBR). While macrophages are key in the FBR, many questions remain. This study investigates temporal changes in the transcriptome of implant-associated monocytes and macrophages.

View Article and Find Full Text PDF

Two factors known to contribute to the development of myelodysplastic syndrome (MDS) and other blood cancers are (i) somatically acquired mutations in components of the spliceosome and (ii) increased inflammation. Spliceosome genes, including SF3B1, are mutated at high frequency in MDS and other blood cancers; these mutations are thought to be neomorphic or gain-of-function mutations that drive disease pathogenesis. Likewise, increased inflammation is thought to contribute to MDS pathogenesis; inflammatory cytokines are strongly elevated in these patients, with higher levels correlating with worsened patient outcome.

View Article and Find Full Text PDF

Although a robust inflammatory response is needed to combat infection, this response must ultimately be terminated to prevent chronic inflammation. One mechanism that terminates inflammatory signaling is the production of alternative mRNA splice forms in the Toll-like receptor (TLR) signaling pathway. Whereas most genes in the TLR pathway encode positive mediators of inflammatory signaling, several, including that encoding the MyD88 signaling adaptor, also produce alternative spliced mRNA isoforms that encode dominant-negative inhibitors of the response.

View Article and Find Full Text PDF

Alveolar macrophages serve as central orchestrators of inflammatory responses in the lungs, both initiating their onset and promoting their resolution. However, the mechanisms that program macrophages for these dynamic responses are not fully understood. Over 95% of all mammalian genes undergo alternative pre-mRNA splicing.

View Article and Find Full Text PDF

Synthetic hydrogels, such as poly(ethylene glycol) (PEG), are promising for a range of in vivo applications. However, like all non-biological biomaterials, synthetic hydrogels including PEG elicit a foreign body response (FBR). The FBR is thought to be initiated by adsorbed protein that is recognized by and subsequently activates inflammatory cells, notably macrophages, and culminates with fibrotic encapsulation.

View Article and Find Full Text PDF

Comparisons of infectivity among the clinically important nontuberculous mycobacteria (NTM) species have not been explored in great depth. Rapid-growing mycobacteria, including and , can cause indolent but progressive lung disease. Slow-growing members of the complex are the most common group of NTM to cause lung disease, and molecular approaches can now distinguish between several distinct species of complex including , , , and .

View Article and Find Full Text PDF

In this chapter, we describe methods for functional genomics studies in mouse macrophages. In particular, we describe complementary methods for gene inhibition using RNA interference (RNAi) and gene overexpression. These methods are readily amenable to medium- and high-throughput functional genomics investigations.

View Article and Find Full Text PDF

Background: Airway epithelial cells and alveolar macrophages (AMs) are the first line of defense in the lung during infection. Toll-like receptor (TLR) agonists have been extensively used to define the regulation of inflammation in these cells. However, previous studies were performed in non-paired airway epithelial cells and AMs.

View Article and Find Full Text PDF

Nontuberculous mycobacteria (NTM) are ubiquitous in the environment and human exposure is likely to be pervasive; yet, the occurrence of NTM-related diseases is relatively infrequent. This discrepancy suggests that host risk factors play an integral role in vulnerability to NTM infections. Isolated NTM lung disease (NTM-LD) is often due to underlying anatomical pulmonary or immune disorders, either of which may be acquired or genetic.

View Article and Find Full Text PDF

Myelodysplastic syndrome (MDS) is a malignant hematopoietic stem cell disorder that frequently evolves into acute myeloid leukemia (AML). Patients with MDS are prone to infectious complications, in part due to the presence of severe neutropenia and/or neutrophil dysfunction. However, not all patients with neutropenia become infected, suggesting that other immune cells may compensate in these patients.

View Article and Find Full Text PDF

Numerous approaches have been taken in the hunt for human disease genes. The identification of such genes not only provides a great deal of information about the mechanism of disease development, but also provides potential avenues for better diagnosis and treatment. In this chapter, we review the use of the nonmammalian model organism C.

View Article and Find Full Text PDF
Article Synopsis
  • Acute respiratory distress syndrome (ARDS) involves significant inflammation, with Toll-like receptor (TLR) signaling playing a dual role in fighting infection and contributing to harmful inflammation.
  • Researchers studied the alternative splicing of TLR-related genes (MyD88 and IRAK1) in patients with ARDS and discovered a shift towards pro-inflammatory mRNA types in their immune cells compared to healthy individuals.
  • The altered levels of a specific anti-inflammatory isoform (IRAK1c) in ARDS patients were linked to survival outcomes, indicating that understanding these splicing changes could inform new treatment strategies for ARDS.
View Article and Find Full Text PDF

Host variation in Toll-like receptors and other innate immune signaling molecules alters infection susceptibility. However, only a portion of the variability observed in the innate immune response is accounted for by known genes in these pathways. Thus, the identification of additional genes that regulate the response to Gram positive bacteria is warranted.

View Article and Find Full Text PDF

The innate immune response plays a key role in fighting infection by activating inflammation and stimulating the adaptive immune response. However, chronic activation of innate immunity can contribute to the pathogenesis of many diseases with an inflammatory component. Thus, various negatively acting factors turn off innate immunity subsequent to its activation to ensure that inflammation is self-limiting and to prevent inflammatory disease.

View Article and Find Full Text PDF

Macrophages are key phagocytic innate immune cells. When macrophages encounter a pathogen, they produce antimicrobial proteins and compounds to kill the pathogen, produce various cytokines and chemokines to recruit and stimulate other immune cells, and present antigens to stimulate the adaptive immune response. Thus, being able to efficiently manipulate macrophages with techniques such as RNA-interference (RNAi) is critical to our ability to investigate this important innate immune cell.

View Article and Find Full Text PDF

The extent of the innate immune response is regulated by many positively and negatively acting signaling proteins. This allows for proper activation of innate immunity to fight infection while ensuring that the response is limited to prevent unwanted complications. Thus mutations in innate immune regulators can lead to immune dysfunction or to inflammatory diseases such as arthritis or atherosclerosis.

View Article and Find Full Text PDF

Controlling infectious disease without inducing unwanted inflammatory disease requires proper regulation of the innate immune response. Thus, innate immunity needs to be activated when needed during an infection, but must be limited to prevent damage. To accomplish this, negative regulators of innate immunity limit the response.

View Article and Find Full Text PDF

The innate immune response plays a critical role in fighting infection; however, innate immunity also can affect the pathogenesis of a variety of diseases, including sepsis, asthma, cancer, and atherosclerosis. To identify novel regulators of innate immunity, we performed comparative genomics RNA interference screens in the nematode Caenorhabditis elegans and mouse macrophages. These screens have uncovered many candidate regulators of the response to lipopolysaccharide (LPS), several of which interact physically in multiple species to form an innate immunity protein interaction network.

View Article and Find Full Text PDF

The innate immune response plays a critical role in pathogen clearance. However, dysregulation of innate immunity contributes to acute inflammatory diseases such as sepsis and many chronic inflammatory diseases including asthma, arthritis, and Crohn's disease. Pathogen recognition receptors including the Toll-like family of receptors play a pivotal role in the initiation of inflammation and in the pathogenesis of many diseases with an inflammatory component.

View Article and Find Full Text PDF