Publications by authors named "Scott A Ross"

Computational protein design procedures were applied to the redesign of the entire sequence of a 51 amino acid residue protein, Drosophila melanogaster engrailed homeodomain. Various sequence optimization algorithms were compared and two resulting designed sequences were experimentally evaluated. The two sequences differ by 11 mutations and share 22% and 24% sequence identity with the wild-type protein.

View Article and Find Full Text PDF

Hydrogen bond interactions were surveyed in a set of protein structures. Compared to surface positions, polar side-chains at core positions form a greater number of intra-molecular hydrogen bonds. Furthermore, the majority of polar side-chains at core positions form at least one hydrogen bond to main-chain atoms that are not involved in hydrogen bonds to other main-chain atoms.

View Article and Find Full Text PDF

Huntington's disease and several other neurological diseases are caused by expanded polyglutamine [poly(Gln)] tracts in different proteins. Mechanisms for expanded (>36 Gln residues) poly(Gln) toxicity include the formation of aggregates that recruit and sequester essential cellular proteins [Preisinger, E., Jordan, B.

View Article and Find Full Text PDF

Replacement of iron with cobalt(III) selectively introduces a deep trap in the folding-energy landscape of the heme protein cytochrome c. Remarkably, neither the protein structure nor the folding thermodynamics is perturbed by this metal-ion substitution, as shown by data from spectroscopic and x-ray diffraction experiments. Through kinetics measurements, we have found parallel folding pathways involving several different misligated Co(III) species, and, as these folding intermediates persist for several hours under certain conditions, we have been able to elucidate fully their spectroscopic properties.

View Article and Find Full Text PDF

Polyamides composed of N-methylpyrrole (Py), N-methylimidazole (Im) and N-methylhydroxypyrrole (Hp) amino acids linked by beta-alanine (beta) bind the minor groove of DNA in 1:1 and 2:1 ligand to DNA stoichiometries. Although the energetics and structure of the 2:1 complex has been explored extensively, there is remarkably less understood about 1:1 recognition beyond the initial studies on netropsin and distamycin. We present here the 1:1 solution structure of ImPy-beta-Im-beta-ImPy-beta-Dp bound in a single orientation to its match site within the DNA duplex 5'-CCAAAGAGAAGCG-3'.

View Article and Find Full Text PDF