Publications by authors named "Scott A Mullin"

Quasi-elastic neutron scattering experiments on mixtures of poly(ethylene oxide) and lithium bis(trifluoromethane)sulfonimide salt, a standard polymer electrolyte, led to the quantification of the effect of salt on segmental dynamics in the 1-10 Å length scale. The monomeric friction coefficient characterizing segmental dynamics on these length scales increases exponentially with salt concentration. More importantly, we find that this change in monomeric friction alone is responsible for all of the observed nonlinearity in the dependence of ionic conductivity on salt concentration.

View Article and Find Full Text PDF

The ionic conductivity of a block copolymer electrolyte was measured in an in situ small-angle X-ray scattering experiment as it transitioned from an ordered lamellar structure to a disordered phase. The ionic conductivity increases discontinuously as the electrolyte transitions from order to disorder. A simple framework for quantifying the magnitude of the discontinuity is presented.

View Article and Find Full Text PDF

The main objective of this work is to study charge transport in mixtures of poly(3-hexylthiophene)-b-poly(ethylene oxide) (P3HT-PEO) block copolymers and lithium bis(trifluoromethanesulfonyl) imide salt (LiTFSI). The P3HT-rich microphase conducts electronic charge, while the PEO-rich microphase conducts ionic charge. The nearly symmetric P3HT-PEO copolymer used in this study self-assembles into a lamellar phase.

View Article and Find Full Text PDF

Conventional ordered phases such as crystals and liquid crystals have constant domain spacings. In this Letter, we report on the formation of coherently ordered morphologies wherein the domain spacing changes continuously along a specified direction. We have coined the term "gradient crystal" to refer to this structure, a signature of which is a small-angle X-ray scattering pattern that resembles a sundial.

View Article and Find Full Text PDF