Arch Immunol Ther Exp (Warsz)
January 2025
Following its discovery as an adaptive immune system in prokaryotes, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system has been developed into a multifaceted genome editing tool. This review compiles findings aimed at implementation of this technology for selective elimination or attenuation of enterohemorrhagic (EHEC). EHEC are important zoonotic foodborne pathogens that cause hemorrhagic colitis and can progress to the life-threatening hemolytic uremic syndrome (HUS).
View Article and Find Full Text PDFPathogenic bacteria recognize environmental cues to vary gene expression for host adaptation. Moving from ambient to host temperature, responds by immediately repressing flagella synthesis and inducing the virulence plasmid (pYV)-encoded type III secretion system. In contrast, shifting from host to ambient temperature requires 2.
View Article and Find Full Text PDFPathogenic Escherichia coli and Salmonella enterica pose serious public health threats due to their ability to cause severe gastroenteritis and life-threatening sequela, particularly in young children. Moreover, the emergence and dissemination of antibiotic resistance in these bacteria have complicated control of infections. Alternative strategies that effectively target these enteric pathogens and negate or reduce the need of antibiotics are urgently needed.
View Article and Find Full Text PDFUnderstanding transmission dynamics of SARS-CoV-2 in institutions of higher education (IHEs) is important because these settings have potential for rapid viral spread. Here, we used genomic surveillance to retrospectively investigate transmission dynamics throughout the 2020-2021 academic year for the University of Idaho ("University"), a mid-sized IHE in a small rural town. We generated genome assemblies for 1168 SARS-CoV-2 samples collected during the academic year, representing 46.
View Article and Find Full Text PDFAil confers serum resistance in humans and is a critical virulence factor of Y. pestis, the causative agent of plague. Here, the contribution of Ail for Y.
View Article and Find Full Text PDFCurr Opin Infect Dis
June 2022
Purpose Of Review: This review updates recent findings about Escherichia coli O157:H7 virulence factors and its bovine reservoir. This Shiga toxin (Stx)-producing E. coli belongs to the Enterohemorrhagic E.
View Article and Find Full Text PDFCurr Opin Infect Dis
June 2022
Purpose Of Review: Pathogenic Yersinia have been a productive model system for studying bacterial pathogenesis. Hallmark contributions of Yersinia research to medical microbiology are legion and include: (i) the first identification of the role of plasmids in virulence, (ii) the important mechanism of iron acquisition from the host, (iii) the first identification of bacterial surface proteins required for host cell invasion, (iv) the archetypical type III secretion system, and (v) elucidation of the role of genomic reduction in the evolutionary trajectory from a fairly innocuous pathogen to a highly virulent species.
Recent Findings: The outer membrane (OM) protein Ail (attachment invasion locus) was identified over 30 years ago as an invasin-like protein.
Idaho Institutional Development Award (IDeA) Network for Biomedical Research Excellence (INBRE) aims to build biomedical research capacity and enhance the scientific and technology knowledge of the Idaho workforce. A key INBRE Program at The College of Idaho, a primarily undergraduate institution of 1,100 students, is a 10-wk summer fellows research experience. This report documents outcomes from 2005 to present, including demographic trends, faculty and student research productivity, self-reported gains, educational attainment, and career outcomes.
View Article and Find Full Text PDFMaintenance of phospholipid (PL) and lipopoly- or lipooligosaccharide (LPS or LOS) asymmetry in the outer membrane (OM) of Gram-negative bacteria is essential but poorly understood. The Yersinia pestis OM Ail protein was required to maintain lipid homeostasis and cell integrity at elevated temperature (37°C). Loss of this protein had pleiotropic effects.
View Article and Find Full Text PDFStrictly lytic phages are considered powerful tools for biocontrol of foodborne pathogens. Safety issues needed to be addressed for the biocontrol of Shiga toxin-producing Escherichia coli (STEC) include: lysogenic conversion, Shiga toxin production through phage induction, and emergence/proliferation of bacteriophage insensitive mutants (BIMs). To address these issues, two new lytic phages, vB_EcoS_Ace (Ace) and vB_EcoM_Shy (Shy), were isolated and characterized for life cycle, genome sequence and annotation, pH stability and efficacy at controlling STEC growth.
View Article and Find Full Text PDFSubcutaneous vaccination of cattle for enterohemorrhagic O157:H7 reduces the magnitude and duration of fecal shedding, but the often-required, repeated cattle restraint can increase costs, deterring adoption by producers. In contrast, live oral vaccines may be repeatedly administered in feed, without animal restraint. We investigated whether oral immunization with live -negative LEE O157:H7 reduced rectoanal junction (RAJ) colonization by wild-type (WT) O157:H7 strains after challenge.
View Article and Find Full Text PDFO157:H7 (O157) is noninvasive and a weak biofilm producer; however, a subset of O157 are exceptions. O157 ATCC 43895 forms biofilms and invades epithelial cells. Tn mutagenesis identified a mutation responsible for both phenotypes.
View Article and Find Full Text PDFThe Shiga toxin-encoding phage SH2026Stx1 was isolated from O157:H7 strain 2026. SH2026Stx1 and its detoxified derivative can infect a broad range of strains, including commensal, enteropathogenic, and enteroaggregative strains. We report here the complete genome sequence of phage SH2026Stx1 and its important features.
View Article and Find Full Text PDFShiga toxin-producing (STEC) bacteria are zoonotic pathogens. We report here the high-quality complete genome sequences of three STEC O177:H- () strains, SMN152SH1, SMN013SH2, and SMN197SH3. The assembled genomes consisted of one optical map-verified circular chromosome for each strain, plus two plasmids for SMN013SH2 and three plasmids for SMN152SH1 and SMN197SH3, respectively.
View Article and Find Full Text PDFThe isolation of aerobic citrate-utilizing Escherichia coli (Cit(+)) in long-term evolution experiments (LTEE) has been termed a rare, innovative, presumptive speciation event. We hypothesized that direct selection would rapidly yield the same class of E. coli Cit(+) mutants and follow the same genetic trajectory: potentiation, actualization, and refinement.
View Article and Find Full Text PDFThe increased summertime prevalence of cattle carriage of enterohemorrhagic Shiga toxin-producing Escherichia coli O157:H7 (STEC O157) is associated with the increased summertime incidence of human infection. The mechanism driving the seasonality of STEC O157 carriage among cattle is unknown. We conducted experimental challenge trials to distinguish whether factors extrinsic or intrinsic to cattle underlie the seasonality of STEC O157 colonization.
View Article and Find Full Text PDFYersinia pestis grown with physiologic glucose increased cell autoaggregation and deposition of extracellular material, including membrane vesicles. Membranes were characterized, and glucose had significant effects on protein, lipid, and carbohydrate profiles. These effects were independent of temperature and the biofilm-related locus pgm and were not observed in Yersinia pseudotuberculosis.
View Article and Find Full Text PDFYersinia pestis is one of the most virulent bacteria identified. It is the causative agent of plague-a systemic disease that has claimed millions of human lives throughout history. Y.
View Article and Find Full Text PDFA comprehensive TnphoA mutant library was constructed in Yersinia pestis KIM6 to identify surface proteins involved in Y. pestis host cell invasion and bacterial virulence. Insertion site analysis of the library repeatedly identified a 9,042-bp chromosomal gene (YPO3944), intimin/invasin-like protein (Ilp), similar to the Gram-negative intimin/invasin family of surface proteins.
View Article and Find Full Text PDFEscherichia coli O157:H7 (O157) causes human diarrheal disease and healthy cattle are its primary reservoir. O157 colonize the bovine epithelial mucosa at the recto-anal junction (RAJ). Previous studies show that O157 at this site are not eliminated by aggressive interventions including applications of O157-specific lytic bacteriophages and other bactericidal agents.
View Article and Find Full Text PDFYersinia pestis, the causative agent of plague, is one of the most virulent microorganisms known. The outer membrane protein X (OmpX) in Y. pestis KIM is required for efficient bacterial adherence to and internalization by cultured HEp-2 cells and confers resistance to human serum.
View Article and Find Full Text PDFBackground: The human innate immune system relies on the coordinated activity of macrophages and polymorphonuclear leukocytes (neutrophils or PMNs) for defense against bacterial pathogens. Yersinia spp. subvert the innate immune response to cause disease in humans.
View Article and Find Full Text PDFHuman polymorphonuclear leukocytes (PMNs, or neutrophils) are the most abundant innate immune cell and kill most invading bacteria through combined activities of reactive oxygen species (ROS) and antimicrobial granule constituents. Pathogens such as Yersinia pestis resist destruction by the innate immune system and are able to survive in macrophages and neutrophils. The specific molecular mechanisms used by Y.
View Article and Find Full Text PDFAn effective intranasal (i.n.) vaccine against pneumonic plague was developed.
View Article and Find Full Text PDF