Publications by authors named "Scott A Hatch"

Article Synopsis
  • Life-history theory suggests that trying to raise babies can make animals less likely to survive, but we don't fully understand why.
  • Scientists studied pelagic cormorants over 16 years to see how the energy they used while raising chicks affected their survival chances.
  • They found that most years, energy use didn't seem tied to survival, and older birds used less energy, probably because they’ve learned to do things more efficiently.
View Article and Find Full Text PDF

We provide evidence of anthropogenic materials ingestion in seabirds from a remote oceanic area, using regurgitates obtained from black-legged kittiwake (Rissa tridactyla) chicks from Middleton Island (Gulf of Alaska, USA). By means of GPS tracking of breeding adults, we identified foraging grounds where anthropogenic materials were most likely ingested. They were mainly located within the continental shelf of the Gulf of Alaska and near the Alaskan coastline.

View Article and Find Full Text PDF

Because of ongoing rapid climate change, many ecosystems are becoming both warmer and more variable, and these changes are likely to alter the magnitude and variability of natural selection acting on wild populations. Critically, changes and fluctuations in selection can impact both population demography and evolutionary change. Therefore, predicting the impacts of climate change depends on understanding the magnitude and variation in selection on traits across different life stages and environments.

View Article and Find Full Text PDF

Amidst the current biodiversity crisis, the availability of genomic resources for declining species can provide important insights into the factors driving population decline. In the early 1990s, the black-legged kittiwake (Rissa tridactyla), a pelagic gull widely distributed across the arctic, subarctic, and temperate zones, suffered a steep population decline following an abrupt warming of sea surface temperature across its distribution range and is currently listed as Vulnerable by the International Union for the Conservation of Nature. Kittiwakes have long been the focus for field studies of physiology, ecology, and ecotoxicology and are primary indicators of fluctuating ecological conditions in arctic and subarctic marine ecosystems.

View Article and Find Full Text PDF

The ability to efficiently measure the health and nutritional status of wild populations in situ is a valuable tool, as many methods of evaluating animal physiology do not occur in real-time, limiting the possibilities for direct intervention. This study investigates the use of blood plasma metabolite concentrations, measured via point-of-care devices or a simple plate reader assay, as indicators of nutritional state in free-living seabirds. We experimentally manipulated the energy expenditure of wild black-legged kittiwakes on Middleton Island, Alaska, and measured the plasma concentrations of glucose, cholesterol, B-hydroxybutyrate, and triglycerides throughout the breeding season, along with measures of body condition (size-corrected mass [SCM] and muscle depth).

View Article and Find Full Text PDF

Seasonal timing of breeding is usually considered to be triggered by endogenous responses linked to predictive cues (e.g., photoperiod) and supplementary cues that vary annually (e.

View Article and Find Full Text PDF

Breeding animals trade off maximizing energy output to increase their number of offspring with conserving energy to ensure their own survival, leading to an energetic ceiling influenced by external, environmental factors or by internal, physiological factors. We examined whether internal or external factors limited energy expenditure by supplementally feeding breeding black-legged kittiwakes varying in individual quality, based on earlier work that defined late breeders as low-quality and early breeders as high-quality individuals. We tested whether energy expenditure increased when food availability decreased in both low- and high-quality birds; we predicted this would only occur in high-quality individuals capable of sustaining high levels of energy expenditure.

View Article and Find Full Text PDF

The microbiota is suggested to be a fundamental contributor to host reproduction and survival, but associations between microbiota and fitness are rare, especially for wild animals. Here, we tested the association between microbiota and two proxies of breeding performance in multiple body sites of the black-legged kittiwake, a seabird species. First we found that, in females, nonbreeders (i.

View Article and Find Full Text PDF
Article Synopsis
  • Predicting how changing environments affect the growth (a key trait for fitness) of black-legged kittiwakes involves examining various factors like sea-surface and air temperatures.
  • A long-term study identified that growth patterns vary significantly based on hatching order, with first-hatched nestlings thriving in colder sea conditions while second-hatched ones do better in warmer overall conditions, especially when food supplementation is provided.
  • The research highlighted specific time periods and conditions that could influence growth, indicating that competition and environmental factors could intensify the effects of warming, particularly on nestlings sharing nests.
View Article and Find Full Text PDF

Some of the longest and most comprehensive marine ecosystem monitoring programs were established in the Gulf of Alaska following the environmental disaster of the Exxon Valdez oil spill over 30 years ago. These monitoring programs have been successful in assessing recovery from oil spill impacts, and their continuation decades later has now provided an unparalleled assessment of ecosystem responses to another newly emerging global threat, marine heatwaves. The 2014-2016 northeast Pacific marine heatwave (PMH) in the Gulf of Alaska was the longest lasting heatwave globally over the past decade, with some cooling, but also continued warm conditions through 2019.

View Article and Find Full Text PDF

Current food supply is a major driver of timing of breeding in income-breeding animals, likely because increased net energy balance directly increases reproductive hormones and advances breeding. In capital breeders, increased net energy balance increases energy reserves, which eventually leads to improved reproductive readiness and earlier breeding. To test the hypothesis that phenology of income-breeding birds is independent of energy reserves, we conducted an experiment on food-supplemented ("fed") and control female black-legged kittiwakes (Rissa tridactyla).

View Article and Find Full Text PDF

We tested the hypothesis that segregation in wintering areas is associated with population differentiation in a sentinel North Pacific seabird, the rhinoceros auklet (Cerorhinca monocerata). We collected tissue samples for genetic analyses on five breeding colonies in the western Pacific Ocean (Japan) and on 13 colonies in the eastern Pacific Ocean (California to Alaska), and deployed light-level geolocator tags on 12 eastern Pacific colonies to delineate wintering areas. Geolocator tags were deployed previously on one colony in Japan.

View Article and Find Full Text PDF

Muscle ultrastructure is closely linked with athletic performance in humans and lab animals, and presumably plays an important role in the movement ecology of wild animals. Movement is critical for wild animals to forage, escape predators and reproduce. However, little evidence directly links muscle condition to locomotion in the wild.

View Article and Find Full Text PDF

Individual condition at one stage of the annual cycle is expected to influence behaviour during subsequent stages, yet experimental evidence of food-mediated carry-over effects is scarce. We used a food supplementation experiment to test the effects of food supply during the breeding season on migration phenology and non-breeding behaviour. We provided an unlimited supply of fish to black-legged kittiwakes () during their breeding season on Middleton Island, Alaska, monitored reproductive phenology and breeding success, and used light-level geolocation to observe non-breeding behaviour.

View Article and Find Full Text PDF

Age is an important parameter for a variety of ecological applications, including population viability analyses, contaminants monitoring and targeting of individuals for conservation. While many organisms can be aged by annual rings, dentition and other techniques (i.e.

View Article and Find Full Text PDF

Carotenoid-based ornaments are common signaling features in animals. Although the mechanisms that link color-based signals to individual condition is key to understanding the evolution and function of these ornaments, they are most often poorly known. Several hypotheses have been posited.

View Article and Find Full Text PDF

Background: In the North Pacific, northern fulmar (Fulmarus glacialis) forms extensive colonies in few locales, which may lead to limited gene flow and locale-specific population threats. In the Atlantic, there are thousands of colonies of varying sizes and in Europe the species is considered threatened. Prior screens and classical microsatellite development in fulmar failed to provide a suite of markers adequate for population genetics studies.

View Article and Find Full Text PDF

Many long-lived animals do not appear to show classic signs of aging, perhaps because they show negligible senescence until dying from "catastrophic" mortality. Muscle senescence is seldom examined in wild animals, yet decline in muscle function is one of the first signs of aging in many lab animals and humans. Seabirds are an excellent study system for physiological implications of aging because they are long-lived animals that actively forage and reproduce in the wild.

View Article and Find Full Text PDF

Early-life conditions can drive ageing patterns and life history strategies throughout the lifespan. Certain social, genetic and nutritional developmental conditions are more likely to produce high-quality offspring: those with good likelihood of recruitment and productivity. Here, we call such conditions "favoured states" and explore their relationship with physiological variables during development in a long-lived seabird, the black-legged kittiwake (Rissa tridactyla).

View Article and Find Full Text PDF

The integral of the dynamic component of acceleration over time has been proposed as a measure of energy expenditure in wild animals. We tested that idea by attaching accelerometers to the tails of free-ranging pelagic cormorants (Phalacrocorax pelagicus) and simultaneously estimating energy expenditure using doubly labelled water. Two different formulations of dynamic body acceleration, [vectorial and overall DBA (VeDBA and ODBA)], correlated with mass-specific energy expenditure (both R(2)=0.

View Article and Find Full Text PDF

Maternal effects occur when the mother's phenotype influences her offspring's phenotype. In birds, differential allocation in egg yolk components can allow mothers to compensate for the competitive disadvantage of junior chicks. We hypothesize that the parent-older chick conflict peaks at intermediate conditions: parents benefit from the younger chick(s) survival, but its death benefits the older chick in terms of growth and survival.

View Article and Find Full Text PDF

The reproductive success of wild animals usually increases with age before declining at the end of life, but the proximate mechanisms underlying those patterns remain elusive. Young animals are expected to invest less in current reproduction due to high prospects for future reproduction (the "restraint" hypothesis). The oldest animals may also show restraint when conditions are sub-optimal where even a small increase in reproductive investment may lead to death ("terminal restraint").

View Article and Find Full Text PDF

Animals are known to select mates to maximize the genetic diversity of their offspring in order to achieve immunity against a broader range of pathogens. Although several bird species preferentially mate with partners that are dissimilar at the major histocompatibility complex (MHC), it remains unknown whether they can use olfactory cues to assess MHC similarity with potential partners. Here we combined gas chromatography data with genetic similarity indices based on MHC to test whether similarity in preen secretion chemicals correlated with MHC relatedness in the black-legged kittiwake (Rissa tridactyla), a species that preferentially mates with genetically dissimilar partners.

View Article and Find Full Text PDF

In nest-bound avian offspring, food shortages typically trigger a release of the stress hormone corticosterone (CORT). Recent studies indicate that CORT is passively deposited in the tissue of growing feathers and thus may provide an integrated measure of stress incurred during development in the nest. The current hypothesis predicts that, assuming a constant rate of feather growth, elevated CORT circulating in the blood corresponds to higher levels of CORT in feather tissue, but experimental evidence for nutritionally stressed chicks is lacking.

View Article and Find Full Text PDF