Publications by authors named "Scott A Fraser"

Fatty acid oxidation is the major energy pathway used by the kidney, although glycolysis becomes more important in the low oxygen environment of the medulla. Fatty acid oxidation appears to be reduced in renal fibrosis, and drugs that reverse this improve fibrosis. Expression of glycolytic genes is more variable, but some studies have shown that inhibiting glycolysis reduces renal fibrosis.

View Article and Find Full Text PDF

Activation of the heterotrimeric energy-sensing kinase AMP-activated protein kinase (AMPK) has been reported to improve experimental diabetic kidney disease. We examined the effect of type 1 diabetes in wild-type (WT) mice and mice lacking the β1 subunit of AMPK (AMPK β1 mice), which have reduced AMPK activity in kidneys and other organs. Diabetes was induced using streptozotocin (STZ) and the animals followed up for 4 weeks.

View Article and Find Full Text PDF

Aims And Objectives: To identify factors that influence the engagement of Chinese Australians with advance care planning.

Background: Despite the benefits of advance care planning, there is a low prevalence of advance care planning in the Chinese Australian community. Reasons for this are often cited as cultural considerations and taboos surrounding future medical planning and death; however, other logistical factors may also be important.

View Article and Find Full Text PDF

Enhanced tubular reabsorption of salt is important in the pathogenesis of obesity-related hypertension, but the mechanisms remain poorly defined. To identify changes in the regulation of salt transporters in the kidney, C57BL/6 mice were fed a 40% fat diet [high-fat diet (HFD)] or a 12% fat diet (control diet) for 14 wk. Compared with control diet-fed mice, HFD-fed mice had significantly greater elevations in weight, blood pressure, and serum insulin and leptin levels.

View Article and Find Full Text PDF

The co-transporter activity of Na(+)-K(+)-2Cl(-) 1 (NKCC1) is dependent on phosphorylation. In this study we show the energy-sensing kinase AMPK inhibits NKCC1 activity. Three separate AMPK activators (AICAR, Phenformin and A-769662) inhibited NKCC1 flux in a variety of nucleated cells.

View Article and Find Full Text PDF

In humans, mutations of the intrinsic lysosomal protein SCARB2 are associated with myoclonic epilepsy, collapsing focal and segmental glomerulosclerosis, and tubular proteinuria. Mice with deficiency of Limp-2 (the murine homologue) develop tubular proteinuria but not focal and segmental glomerulosclerosis and they have a defect in macrophage function. To further elucidate the role of Limp-2 in immune function, we induced anti-glomerular basement membrane (GBM) model of crescentic glomerulonephritis in wild-type (WT) and Limp-2(-/-) littermates by intraperitoneal injections of nephrotoxic sheep serum.

View Article and Find Full Text PDF

Salt reabsorption is the major energy-requiring process in the kidney, and AMP-activated protein kinase (AMPK) is an important regulator of cellular metabolism. Mice with targeted deletion of the β1-subunit of AMPK (AMPK-β1(-/-) mice) had significantly increased urinary Na(+) excretion on a normal salt diet. This was associated with reduced expression of the β-subunit of the epithelial Na(+) channel (ENaC) and increased subapical tubular expression of kidney-specific Na(+)-K(+)-2Cl(-) cotransporter 2 (NKCC2) in the medullary thick ascending limb of Henle.

View Article and Find Full Text PDF

Mutations of the intrinsic lysosomal membrane protein SCARB2 cause action myoclonus-renal failure syndrome (AMRF syndrome), a rare disease characterized by renal and neurological manifestations. In this study, examination of Cos7 cells transfected with SCARB2 cDNA derived from two patients with AMRF syndrome showed that the resultant protein was truncated and was not incorporated into vesicular structures, as occurred with full-length SCARB2 cDNA. Mutant SCARB2 protein failed to colocalize with lysosomes and was found in the endoplasmic reticulum or the cytosol indicating a loss of function.

View Article and Find Full Text PDF

Aim: Activation of the master energy-regulator AMP-activated protein kinase (AMPK) in the heart reduces the severity of ischemia-reperfusion injury (IRI) but the role of AMPK in renal IRI is not known. The aim of this study was to determine whether activation of AMPK by acute renal ischemia influences the severity of renal IRI.

Methods: AMPK expression and activation and the severity of renal IRI was studied in mice lacking the AMPK β1 subunit and compared to wild type (WT) mice.

View Article and Find Full Text PDF

Background/aims: Passive Heymann nephritis (PHN) is a model of human membranous glomerulonephritis characterized by heavy proteinuria. We have recently demonstrated activation of NF-κB by podocytes in this model. In this study, therefore, we have determined whether dexamethasone (DEX) and pyrrolidine dithiocarbamate (PDTC), therapies that inhibit NF-κB, influence proteinuria.

View Article and Find Full Text PDF

Activation of nuclear factor-kappa B (NF-κB) is one of the most important pro-inflammatory mechanisms in disease. In this study, we show that 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), an intermediate in nucleoside metabolism, inhibits signalling by NF-κB in three cell types, including bovine aortic endothelial cells (BAEC). The block in the NF-κB signalling pathway occurred beyond degradation of IκB-α and movement of p65 into the nucleus of BAEC.

View Article and Find Full Text PDF

The energy-sensing kinase AMP-activated protein kinase (AMPK) is associated with the sodium-potassium-chloride cotransporter NKCC2 in the kidney and phosphorylates it on a regulatory site in vitro. To identify a potential role for AMPK in salt sensing at the macula densa, we have used the murine macula densa cell line MMDD1. In this cell line, AMPK was rapidly activated by isosmolar low-salt conditions.

View Article and Find Full Text PDF

Endothelial cell lipotoxicity mediated by accumulation of free fatty acids is an early event in the pathogenesis of atherosclerosis. The energy-sensor AMP-activated protein kinase (AMPK) is a key regulator of endothelial cell lipid metabolism. To test the hypothesis that bradykinin (BK) regulates AMPK and fatty acid oxidation in endothelium, stimulations of bovine aortic endothelial cells (BAECs) with bradykinin were performed.

View Article and Find Full Text PDF

The renal-specific NKCC2 (Na+-K+-2Cl- co-transporter 2) is regulated by changes in phosphorylation state, however, the phosphorylation sites and kinases responsible have not been fully elucidated. In the present study, we demonstrate that the metabolic sensing kinase AMPK (AMP-activated protein kinase) phosphorylates NKCC2 on Ser126 in vitro. Co-precipitation experiments indicated that there is a physical association between AMPK and the N-terminal cytoplasmic domain of NKCC2.

View Article and Find Full Text PDF

AMP-activated protein kinase (AMPK) is a key energy sensor, known to regulate energy metabolism in diverse cell types. Hypoxia is encountered frequently in the microenvironments of inflammatory lesions and is a critical regulator of function in inflammatory cells. Energy deficiency is one of the consequences of hypoxia, but its potential role in modulating leucocyte function has received little attention.

View Article and Find Full Text PDF

Background: Renal nitric oxide (NO) synthesis increases with increasing salt intake, however, the mechanisms underlying this are poorly understood. We hypothesized that activating or inhibitory phosphorylation of neuronal and endothelial nitric oxide synthase (nNOS, eNOS) regulates renal NO production in response to altered dietary salt.

Methods: Sprague-Dawley rats were fed low, normal or high salt diets for 12 h or 2 weeks, and kidney NOS phosphorylation was analyzed by Western blot using phosphopeptide antibodies against the sites nNOS-Ser(1412), nNOS-Ser(847), eNOS-Ser(1176) and eNOS-Thr(494).

View Article and Find Full Text PDF

A fundamental aspect of acute renal ischemia is energy depletion, manifest as a falling level of ATP that is associated with a simultaneous rise in AMP. The energy sensor AMP-activated protein kinase (AMPK) is activated by a rising AMP-to-ATP ratio, but its role in acute renal ischemia is unknown. AMPK is activated in the ischemic heart and is reported to phosphorylate both endothelial nitric oxide synthase (eNOS) and acetyl-CoA carboxylase.

View Article and Find Full Text PDF