Publications by authors named "Scott A Crist"

Chronic prostate inflammation in patients with benign prostate hyperplasia (BPH) correlates with the severity of symptoms. How inflammation contributes to prostate enlargement and/or BPH symptoms and the underlying mechanisms remain unclear. In this study, we utilize a unique transgenic mouse model that mimics chronic non-bacterial prostatitis in men and investigate the impact of inflammation on androgen receptor (AR) in basal prostate stem cells (bPSC) and their differentiation in vivo.

View Article and Find Full Text PDF

The majority of patients with benign prostate hyperplasia (BPH) exhibit chronic prostate inflammation and the extent of inflammation correlates with the severity of symptoms. How inflammation contributes to prostate enlargement and/or BPH symptoms and the underlying mechanisms are not clearly understood. We established a unique mouse model Prostate Ovalbumin Expressing Transgenic 3 (POET3) that mimics chronic non-bacterial prostatitis in men to study the role of inflammation in prostate hyperplasia.

View Article and Find Full Text PDF

Although immunotherapies of tumors have demonstrated promise for altering the progression of malignancies, immunotherapies have been limited by an immunosuppressive tumor microenvironment (TME) that prevents infiltrating immune cells from performing their anticancer functions. Prominent among immunosuppressive cells are myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM) that inhibit T cells via release of immunosuppressive cytokines and engagement of checkpoint receptors. Here, we explore the properties of MDSCs and TAMs from freshly isolated mouse and human tumors and find that an immunosuppressive subset of these cells can be distinguished from the nonimmunosuppressive population by its upregulation of folate receptor beta (FRβ) within the TME and its restriction to the TME.

View Article and Find Full Text PDF

Cholesterol sulfotransferase, SULT2B1b, has been demonstrated to modulate both androgen receptor activity and cell growth properties. However, the mechanism(s) by which SULT2B1b alters these properties within prostate cancer cells has not been described. Furthermore, specific advantages of SULT2B1b expression in prostate cancer cells are not understood.

View Article and Find Full Text PDF

Background: Inhibition of Hsp90 is desirable due to potential downregulation of oncogenic clients. Early generation inhibitors bind to the N-terminal domain (NTD) but C-terminal domain (CTD) inhibitors are a promising class because they do not induce a heat shock response. Here we present a new structural class of CTD binding molecules with a unique allosteric inhibition mechanism.

View Article and Find Full Text PDF

Unlabelled: Cholesterol accumulates in prostate lesions and has been linked to prostate cancer incidence and progression. However, how accumulated cholesterol contributes to prostate cancer development and progression is not completely understood. Cholesterol sulfate (CS), the primary sulfonation product of cholesterol sulfotransferase (SULT2B1b), accumulates in human prostate adenocarcinoma and precancerous prostatic intraepithelial neoplasia (PIN) lesions compared with normal regions of the same tissue sample.

View Article and Find Full Text PDF

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature cells that expand during benign and cancer-associated inflammation and are characterized by their ability to inhibit T cell immunity. Increased metabolism of l-Arginine (l-Arg), through the enzymes arginase 1 and NO synthase 2 (NOS2), is well documented as a major MDSC suppressive mechanism. Therefore, we hypothesized that restricting MDSC uptake of l-Arg is a critical control point to modulate their suppressor activity.

View Article and Find Full Text PDF

Evidence linking prostatitis and prostate cancer development is contradictory. To study this link, the POET3 mouse, an inducible model of prostatitis, was crossed with a Pten-loss model of prostate cancer (Pten(+/-)) containing the ROSA26 luciferase allele to monitor prostate size. Prostatitis was induced, and prostate bioluminescence was tracked over 12 months, with lesion development, inflammation, and cytokine expression analyzed at 4, 8, and 12 months and compared with mice without induction of prostatitis.

View Article and Find Full Text PDF

Corrosion of metal in biomedical devices could cause serious health problems to patients. Currently ceramics coating materials used in metal implants can reduce corrosion to some extent with limitations. Here we proposed graphene as a biocompatible protective film for metal potentially for biomedical application.

View Article and Find Full Text PDF

Increasing evidence implicates circulating platelets as mediators of chronic inflammatory and autoimmune diseases via the expression and release of CD40L, an important modulator of inflammation and adaptive immune responses traditionally associated with activated T cells. Emerging evidence suggests that platelet CD40L is dynamically regulated in several chronic inflammatory and autoimmune diseases and may mediate progression and secondary pathology associated with those disease states. The present study identifies NFATc2 as a key transcriptional modulator of CD40L expression in megakaryocytes and inflammatory activity of platelets.

View Article and Find Full Text PDF

Background: Prostatitis is a poorly understood disease and increasing evidence suggests inflammation is involved in other prostatic diseases including prostate cancer.

Methods: The ability of pre-activated CD8 T cells to induce prostatitis was examined by adoptive transfer of prostate antigen specific CD8 T cells into POET-3 mice or POET-3/Luc/Pten(-/+) mice. Characterization of the inflammatory response was determined by examining leukocyte infiltration by histological analysis, flow cytometry and by evaluating cytokine and chemokine levels in prostate tissue.

View Article and Find Full Text PDF

Current paradigms suggest that, despite the heterogeneity of myeloid-derived suppressor cells (MDSC), all Gr-1(+) CD11b(+) cells can exert suppressive function when exposed to inflammatory stimuli. In vitro evaluation shows that MDSC from multiple tissue sites have suppressive activity, and in vivo inhibition of MDSC enhances T-cell function; however, the relative capacity of MDSC present at localized inflammatory sites or in peripheral tissues to suppress T-cell responses in vivo has not been directly evaluated. In the current study, we observed that during a tissue-specific inflammatory response, MDSC inhibition of CD8(+) T-cell proliferation and IFN-γ production was restricted to the inflammatory site.

View Article and Find Full Text PDF

Initiated by the finding that platelets express functional CD40 ligand (CD40L, CD154), many new roles for platelets have been discovered in unanticipated areas, including the immune response. When current literature is considered as a whole, the picture that is emerging begins to show that platelets are able to significantly affect, for better or worse, the overall health and condition of the mammalian host. Animal models have made significant contributions to our expanding knowledge of platelet function, much of which is anticipated to be clinically relevant.

View Article and Find Full Text PDF

Understanding the adaptive immune response is an area of research critically important in medicine. Several positive regulators of B- and T-cell activation exist to eliminate pathogens, in which CD40 ligand (CD154) plays a fundamental role. It is well documented that CD154 expressed by CD4 T helper cells can be critical in the proper activation of dendritic cells for the productive stimulation of CD8 T cells and is required for proper T-dependent B-cell immunity.

View Article and Find Full Text PDF

Collagen exposure in tissue activates platelets, initiates wound healing, and modulates adaptive immunity. In this report, data are presented to demonstrate a requirement for platelet-derived CD154 for both collagen-induced augmentation of T-cell immunity and induction of pro-tective immunity to Listeria challenge. Specifically, we demonstrate that Ad5 encoding the membrane-bound form of ovalbumin (Ad5-mOVA) delivered in collagen induces higher ovalbumin-specific cytotoxic T lymphocyte (CTL) activity in a dose-dependent manner compared with Ad5-mOVA delivered in PBS.

View Article and Find Full Text PDF

Although mounting evidence indicates that platelets participate in the modulation of both innate and adaptive immunity, the mechanisms by which platelets exert these effects have not been clearly defined. The study reported herein uses a previously documented adoptive transfer model to investigate the ability of platelet-derived membrane vesicles to communicate activation signals to the B-cell compartment. The findings demonstrate for the first time that platelet-derived membrane vesicles are sufficient to deliver CD154 to stimulate antigen-specific IgG production and modulate germinal center formation through cooperation with responses elicited by CD4(+) T cells.

View Article and Find Full Text PDF

Platelets are an abundant source of CD40 ligand (CD154), an immunomodulatory and proinflammatory molecule implicated in the onset and progression of several inflammatory diseases, including systemic lupus erythematosus (SLE), diabetes, and cardiovascular disease. Heretofore considered largely restricted to activated T cells, we initiated studies to investigate the source and regulation of platelet-associated CD154. We found that CD154 is abundantly expressed in platelet precursor cells, megakaryocytes.

View Article and Find Full Text PDF

Objective: Platelets are known to play an important role in hemostasis, thrombosis, wound healing, and inflammation. Platelet-induced modulation of inflammation and adaptive immune responses are mediated in part through tumor necrosis factor (TNF) family member ligands, including CD154, Fas ligand, and TNFalpha, that are expressed upon platelet activation. The present study investigated whether platelets and megakaryocytes also express TNF-related apoptosis-inducing ligand (TRAIL), another pro-apoptotic member of the TNF superfamily.

View Article and Find Full Text PDF

CD28 costimulation, an important second signal for antigen-mediated T cell activation, is known to enhance expression of several genes important for the regulation of CD4+ T cell effector function including interleukin-2 and CD154. Previous studies demonstrate CD28-mediated enhancement of the transcription and expression of Fas ligand (CD95L) in T cell lines, suggesting a regulatory link between CD28 and CD95L expression. These results served as the basis for structure/function analysis of the CD95L promoter to elucidate the mechanism for CD28-mediated enhancement of CD95L.

View Article and Find Full Text PDF

Purpose: The expression of interleukin-6 (IL-6) by normal and malignant urothelium in response to bacillus Calmette-Guerin (BCG) may have direct and indirect effects on the antitumor activity of BCG. We evaluated the molecular signaling pathway through which BCG induces IL-6 expression in human transitional cell carcinoma lines.

Materials And Methods: We evaluated IL-6 messenger RNA and protein expression by human transitional carcinoma cell lines in response to BCG.

View Article and Find Full Text PDF