Publications by authors named "Scot Ouellette"

is an obligate intracellular bacterial pathogen with a unique developmental cycle. It differentiates between two functional and morphological forms: the elementary body (EB) and the reticulate body (RB). The signals that trigger differentiation from one form to the other are unknown.

View Article and Find Full Text PDF

is an obligate intracellular bacterial pathogen that develops within a membrane-bound vacuole called an inclusion. Throughout its developmental cycle, modifies the inclusion membrane (IM) with type III secreted (T3S) membrane proteins, known as inclusion membrane proteins (Incs). Via the IM, manipulates the host cell to acquire lipids and nutrients necessary for its growth.

View Article and Find Full Text PDF

The obligate intracellular bacterial pathogen, (Ct), has a distinct DNA topoisomerase I (TopA) with a C-terminal domain (CTD) homologous to eukaryotic SWIB domains. Despite the lack of sequence similarity at the CTDs between TopA (CtTopA) and TopA (EcTopA), full-length CtTopA removed negative DNA supercoils and complemented the growth defect of an mutant. We demonstrated that CtTopA is less processive in DNA relaxation than EcTopA in dose-response and time course studies.

View Article and Find Full Text PDF

is an obligate intracellular bacterial pathogen that develops within a membrane-bound vacuole called an inclusion. Throughout its developmental cycle, modifies the inclusion membrane (IM) with type III secreted (T3S) membrane proteins, known as inclusion membrane proteins (Incs). Via the IM, manipulates the host cell to acquire lipids and nutrients necessary for its growth.

View Article and Find Full Text PDF

is an obligate intracellular bacterium that undergoes a complex biphasic developmental cycle, alternating between the smaller, infectious, non-dividing elementary body (EB) and the larger, non-infectious but dividing reticulate body. Due to the differences between these functionally and morphologically distinct forms, we hypothesize protein degradation is essential to chlamydial differentiation. The bacterial Clp system, consisting of an ATPase unfoldase (e.

View Article and Find Full Text PDF
Article Synopsis
  • Serovar L2 (Ct) divides through a unique polarized budding process instead of traditional binary fission, due to its lack of FtsZ, a protein common in other bacteria.
  • The assembly of the divisome, essential for cell division, is initiated by FtsK, which forms specific focal points at the site where new daughter cells will emerge, signifying its role in the division process.
  • Research indicates that FtsK is crucial for recruiting other proteins to the divisome, while MreB, though necessary for forming peptidoglycan rings, does not serve as the primary scaffold for divisome assembly.
View Article and Find Full Text PDF

Partner switching mechanisms (PSMs) are signal transduction systems comprised of a sensor phosphatase (RsbU), an anti-sigma factor (RsbW, kinase), an anti-anti-sigma factor (RsbV, the RsbW substrate), and a target sigma factor. spp. are obligate intracellular bacterial pathogens of animals that undergo a developmental cycle transitioning between the infectious elementary body (EB) and replicative reticulate body (RB) within a host cell-derived vacuole (inclusion).

View Article and Find Full Text PDF

is an obligate intracellular bacterial pathogen with a unique developmental cycle. It differentiates between two functional and morphological forms: elementary body (EB) and reticulate body (RB). The signals that trigger differentiation from one form to the other are unknown.

View Article and Find Full Text PDF

The obligate intracellular pathogen, , establishes an intracellular niche within a host membrane-derived vacuole called the chlamydial inclusion. From within this inclusion, orchestrates numerous host-pathogen interactions, in part, by utilizing a family of type III secreted effectors, termed inclusion membrane proteins (Incs). Incs are embedded within the inclusion membrane, and some function to recruit host proteins to the inclusion.

View Article and Find Full Text PDF

Unlabelled: Upon nutrient starvation, serovar L2 (CTL) shifts from its normal growth to a non-replicating form, termed persistence. It is unclear if persistence reflects an adaptive response or a lack thereof. To understand this, transcriptomics data were collected for CTL grown under nutrient-replete and nutrient-starved conditions.

View Article and Find Full Text PDF

The obligate intracellular bacterium alternates between two functional forms during its developmental cycle: elementary body (EB) and reticulate body (RB). However, the molecular mechanisms governing the transitions between these forms are unknown. Here, we present evidence cyclic di-AMP (c-di-AMP) is a key factor in triggering the transition from RB to EB (i.

View Article and Find Full Text PDF

is an obligate intracellular bacterium that is responsible for the most prevalent bacterial sexually transmitted infection. Changes in DNA topology in this pathogen have been linked to its pathogenicity-associated developmental cycle. Here, evidence is provided that the balanced activity of DNA topoisomerases contributes to controlling developmental processes.

View Article and Find Full Text PDF
Article Synopsis
  • On nutrient starvation, serovar L2 (CTL) transitions to a non-replicating "persistence" state, raising questions about whether this is an adaptive strategy or not.
  • Machine learning analysis of transcriptomics data shows significant changes in CTL’s gene expression under stress without a central regulatory mechanism, suggesting a lack of adaptive response.
  • Metabolic model analysis indicates that the gene phosphoglycerate mutase plays a crucial role in CTL's shift to persistence, with experiments confirming its essential function in this process, introducing new methods to study CTL persistence through thermodynamics and enzyme cost.
View Article and Find Full Text PDF

The bacterial two-hybrid (BACTH, for "Bacterial Adenylate Cyclase-based Two-Hybrid") system is a simple and fast genetic approach to detect and characterize protein-protein interactions in vivo. This system is based on the interaction-mediated reconstitution of a cAMP signaling cascade in Escherichia coli. As BACTH uses a diffusible cAMP messenger molecule, the physical association between the two interacting chimeric proteins can be spatially separated from the transcription activation readout, and therefore, it is possible to analyze protein-protein interactions that occur either in the cytosol or at the inner membrane level as well as those that involve DNA-binding proteins.

View Article and Find Full Text PDF

is a developmentally regulated, obligate intracellular bacterium that encodes three sigma factors: σ66, σ54, and σ28. σ66 is the major sigma factor controlling most transcription initiation during early- and mid-cycle development as the infectious elementary body (EB) transitions to the non-infectious reticulate body (RB) that replicates within an inclusion inside the cell. The roles of the minor sigma factors, σ54 and σ28, have not been well characterized to date; however, there are data to suggest each functions in late-stage development and secondary differentiation as RBs transition to EBs.

View Article and Find Full Text PDF
Article Synopsis
  • In 2020, the International Committee on Systematics of Prokaryotes (ICSP) rejected a proposal to change the naming rules for prokaryotes to include gene sequences as a basis for nomenclature.
  • In 2022, an alternative naming system called SeqCode was introduced, allowing genome sequences to be used for naming species.
  • The ICSP's taxonomy subcommittee believes that using gene sequences could improve naming for hard-to-culture microorganisms, like chlamydiae, and suggests registering new names for uncultured prokaryotes in the SeqCode registry.
View Article and Find Full Text PDF

In adapting to the intracellular niche, obligate intracellular bacteria usually undergo a reduction of genome size by eliminating genes not needed for intracellular survival. These losses can include, for example, genes involved in nutrient anabolic pathways or in stress response. Living inside a host cell offers a stable environment where intracellular bacteria can limit their exposure to extracellular effectors of the immune system and modulate or outright inhibit intracellular defense mechanisms.

View Article and Find Full Text PDF

Chlamydia trachomatis is an obligate intracellular bacterial pathogen. In evolving to the intracellular niche, Chlamydia has reduced its genome size compared to other bacteria and, as a consequence, has a number of unique features. For example, Chlamydia engages the actin-like protein MreB, rather than the tubulin-like protein FtsZ, to direct peptidoglycan (PG) synthesis exclusively at the septum of cells undergoing polarized cell division.

View Article and Find Full Text PDF

Unlabelled: is a developmentally regulated, obligate intracellular bacterium that encodes three sigma factors: σ66, σ54, and σ28. σ66 is the major sigma factor controlling most transcription initiation during early and mid-cycle development as the infectious EB transitions to the non-infectious RB that replicates within an inclusion inside the cell. The roles of the minor sigma factors, σ54 and σ28, have not been well characterized to date - however, there are data to suggest each functions in late-stage development and secondary differentiation as RBs transition to EBs.

View Article and Find Full Text PDF

The obligate intracellular human pathogen Chlamydia trachomatis (Ctr) undergoes a complex developmental cycle in which the bacterium differentiates between two functionally and morphologically distinct forms: the elementary body (EB) and the reticulate body (RB). The EB is the smaller, infectious, nondividing form which initiates infection of a susceptible host cell, whereas the RB is the larger, non-infectious form which replicates within a membrane-bound vesicle called an inclusion. The mechanism(s) which drives differentiation between these developmental forms is poorly understood.

View Article and Find Full Text PDF

is an obligate intracellular bacterium that is responsible for the most prevalent bacterial sexually transmitted infections. Changes in DNA topology in this pathogen have been linked to its pathogenicity-associated developmental cycle. Here, evidence is provided that the balanced activity of DNA topoisomerases (Topos) contributes to developmental processes.

View Article and Find Full Text PDF

Bacterial AAA+ unfoldases are crucial for bacterial physiology by recognizing specific substrates and, typically, unfolding them for degradation by a proteolytic component. The aseinoytic rotease (Clp) system is one example where a hexameric unfoldase (e.g.

View Article and Find Full Text PDF

The obligate intracellular Chlamydiaceae do not need to resist osmotic challenges and thus lost their cell wall in the course of evolution. Nevertheless, these pathogens maintain a rudimentary peptidoglycan machinery for cell division. They build a transient peptidoglycan ring, which is remodeled during the process of cell division and degraded afterwards.

View Article and Find Full Text PDF

(CT) causes the most prevalent sexually transmitted bacterial disease in the United States. The lack of drug selectivity is one of the main challenges of the current antichlamydial pharmacotherapy. The metabolic needs of CT are controlled, among others, by cylindrical proteases and their chaperones (, ClpX).

View Article and Find Full Text PDF

Chlamydia is an obligate intracellular pathogen with a highly reduced genome devoid of major stress response genes like and , which mediate the stringent response. Interestingly, as an intracellular bacterium dependent on its host for nutrients and as a tryptophan (Trp) auxotroph, Chlamydia is very sensitive to Trp starvation, which is induced by the host cytokine interferon-γ. In response to Trp starvation, Chlamydia enters a viable but nonreplicating state called persistence.

View Article and Find Full Text PDF