Replacement of the azetidine carboxylate of an S1P(1) agonist development candidate, AMG 369, with a range of acyclic head-groups led to the identification of a novel, S1P(3)-sparing S1P(1) agonist, (-)-2-amino-4-(3-fluoro-4-(5-(1-phenylcyclopropyl)thiazolo[5,4-b]pyridin-2-yl)phenyl)-2-methylbutanoic acid (8c), which possessed good in vivo efficacy and pharmacokinetic properties. A 0.3mg/kg oral dose of 8c produced a statistically significant reduction in blood lymphocyte counts 24h post-dosing in female Lewis rats.
View Article and Find Full Text PDFAn SAR campaign designed to increase polarity in the 'tail' region of benzothiazole 1 resulted in two series of structurally novel 5-and 6-substituted S1P(1) agonists. Structural optimization for potency ultimately delivered carboxamide (+)-11f, which in addition to possessing improved physicochemical properties relative to starting benzothiazole 1, also displayed good S1P(3) selectivity and acceptable in vivo lymphocyte-depleting activity.
View Article and Find Full Text PDFThe optimization of a series of thiazolopyridine S1P1 agonists with limited activity at the S1P3 receptor is reported. These efforts resulted in the discovery of 1-(3-fluoro-4-(5-(1-phenylcyclopropyl)thiazolo-[5,4-b]pyridin-2-yl)benzyl)azetidine-3-carboxylic acid (5d, AMG 369), a potent dual S1P1/S1P5 agonist with limited activity at S1P3 and no activity at S1P2/S1P4. Dosed orally at 0.
View Article and Find Full Text PDFOptimization of a benzofuranyl S1P1 agonist lead compound (3) led to the discovery of 1-(3-fluoro-4-(5-(2-fluorobenzyl)benzo[d]thiazol-2-yl)benzyl)azetidine-3-carboxylic acid (14), a potent S1P1 agonist with minimal activity at S1P3. Dosed orally at 0.3 mg/kg, 14 significantly reduced blood lymphocyte counts 24 h postdose and attenuated a delayed type hypersensitivity (DTH) response to antigen challenge.
View Article and Find Full Text PDFWe have discovered novel benzofuran-based S1P1 agonists with excellent in vitro potency and selectivity. 1-((4-(5-Benzylbenzofuran-2-yl)-3-fluorophenyl)methyl) azetidine-3-carboxylic acid (18) is a potent S1P1 agonist with >1000× selectivity over S1P3. It demonstrated a good in vitro ADME profile and excellent oral bioavailability across species.
View Article and Find Full Text PDFRodent models of immune-mediated arthritis (RMIA) are the conventional approach to evaluating mechanisms of inflammatory joint disease and the comparative efficacy of antiarthritic agents. Rat adjuvant-induced (AIA), collagen-induced (CIA), and streptococcal cell wall-induced (SCW) arthritides are preferred models of the joint pathology that occurs in human rheumatoid arthritis (RA). Lesions of AIA are most severe and consistent; structural and immunological changes of CIA best resemble RA.
View Article and Find Full Text PDFIntroduction: Rat adjuvant-induced arthritis (AIA) and collagen-induced arthritis (CIA) feature bone loss and systemic increases in TNFalpha, IL-1beta, and receptor activator of NF-kappaB ligand (RANKL). Anti-IL-1 or anti-TNFalpha therapies consistently reduce inflammation in these models, but systemic bone loss often persists. RANKL inhibition consistently prevents bone loss in both models without reducing joint inflammation.
View Article and Find Full Text PDFRats with collagen-induced arthritis (CIA) were necropsied on 14 occasions from 4 days after induction to 27 days after disease onset to evaluate the kinetics of local (joint protein extracts) and systemic (serum) levels of inflammatory and pro-erosive factors. Systemic increases in alpha1 acid glycoprotein and KC/GRO together with systemic and local enrichment of interleukin (IL)-1beta, IL-6, CCL2, transforming growth factor (TGF)-beta and elevated IL-1alpha and IL-18 in joint extracts preceded the onset of clinical disease. Systemic upregulation of IL-1beta, IL-6, TGF-beta CCL2, RANKL and prostaglandin E(2) (PGE(2)) during acute and/or chronic CIA coincided with systemic leukocytosis and a CD4+ T-cell increase in blood and spleen.
View Article and Find Full Text PDFInvestigations into the structure-activity relationships (SAR) of a series of phthalazine-based inhibitors of p38 are described. These efforts originated from quinazoline 1 and through rational design led to the development of a series of orally bioavailable, potent, and selective inhibitors. Kinase selectivity was achieved by exploiting a collection of interactions with p38alpha including close contact to Ala157, occupation of the hydrophobic gatekeeper pocket, and a residue flip with Gly110.
View Article and Find Full Text PDFIntroduction: Rats with adjuvant-induced arthritis (AIA) were necropsied on 14 occasions during preclinical, acute clinical and chronic clinical stages of AIA progression to characterize local (joint protein extracts) and systemic (serum) levels of mediators regulating inflammation and bone erosion in conjunction with lymphoid tissue-specific leukocyte kinetics.
Results: Systemic increases in alpha1 acid glycoprotein, tumor necrosis factor-alpha (TNFalpha), interleukin (IL)-17, transforming growth factor beta (TGFbeta), and chemokine (C-C motif) ligand 2 (CCL2) together with local IL-1alpha/beta and TGFbeta enrichment and local lymphoid hyperplasia preceded the onset of clinical disease and joint damage. Systemic upregulation of TNFalpha, IL-6, IL-17, TGFbeta, IL-18, CCL2, receptor activator of nuclear factor-kappabeta ligand (RANKL), and prostaglandin E(2) during acute and/or chronic AIA coincided with systemic leukocytosis and CD4+ T cell increase in blood and spleen.
Lck, or lymphocyte specific kinase, is a cytoplasmic tyrosine kinase of the Src family expressed in T-cells and NK cells. Genetic evidence from knockout mice and human mutations demonstrates that Lck kinase activity is critical for T-cell receptor-mediated signaling, leading to normal T-cell development and activation. A small molecule inhibitor of Lck is expected to be useful in the treatment of T-cell-mediated autoimmune and inflammatory disorders and/or organ transplant rejection.
View Article and Find Full Text PDFThe lymphocyte-specific kinase (Lck) is a cytoplasmic tyrosine kinase of the Src family expressed in T cells and NK cells. Genetic evidence in both mice and humans demonstrates that Lck kinase activity is critical for signaling mediated by the T cell receptor (TCR), which leads to normal T cell development and activation. A small molecule inhibitor of Lck is expected to be useful in the treatment of T cell-mediated autoimmune and inflammatory disorders and/or organ transplant rejection.
View Article and Find Full Text PDFObjective: To analyze the kinetics of osteoclastogenesis in 2 models of chronic immune-mediated arthritis and 1 model of acute arthritis.
Methods: Adjuvant-induced arthritis (AIA) and collagen-induced arthritis (CIA) in Lewis rats were used as models of chronic arthritis. Acute arthritis was induced in Lewis rats by injecting carrageenan into the hind paw.
Unlabelled: RANKL is an essential mediator of bone erosions, but the role of RANKL in systemic bone loss had not been studied in arthritis. RANKL protein was increased in rat joint extracts and serum at the earliest stages of arthritis. Osteoprotegerin (OPG) treatment reversed local and systemic bone loss, suggesting that RANKL is both a marker and mediator of bone loss in arthritis.
View Article and Find Full Text PDFObjective: To investigate whether the bone-preserving effects of a RANKL antagonist or a tumor necrosis factor (TNF) antagonist could be further improved by the addition of a bone anabolic agent in inflammatory arthritis.
Methods: Lewis rats with either adjuvant-induced arthritis (AIA) or collagen-induced arthritis (CIA) were treated for 10 days with PEGylated soluble tumor necrosis factor receptor type I (PEG sTNFRI), interleukin-1 receptor antagonist (IL-1Ra), osteoprotegerin (OPG), parathyroid hormone (PTH), or combinations of these agents starting on day 4 after disease onset. Treatment effects were assessed clinically, radiologically, and histologically, and by morphometry for the extent of paw swelling, bone erosive changes, and synovial inflammation.
Novel potent trisubstituted pyridazine inhibitors of p38 MAP (mitogen activated protein) kinase are described that have activity in both cell-based assays of cytokine release and animal models of rheumatoid arthritis. They demonstrated potent inhibition of LPS-induced TNF-alpha production in mice and exhibited good efficacy in the rat collagen induced arthritis model.
View Article and Find Full Text PDF