Publications by authors named "Scivetti I"

Understanding the interplay between strain and nonstoichiometry for the electronic, magnetic, and redox properties of LiMnO films is essential for their development as Li-ion battery (LIB) cathodes, photoelectrodes, and systems for sustainable spintronics applications as well as for emerging applications that combine these technologies. Here, density functional theory (DFT) simulations suggest that compressive strain increases the reduction drive of (111) LiMnO films by inducing >1 eV upshift of the valence band edge. The DFT results indicate that, regardless of the crystallographic orientation for the LiMnO film, biaxial expansion increases the magnetic moments of the Mn atoms.

View Article and Find Full Text PDF

The Empirical Valence Bond (EVB) method offers a suitable framework to obtain reactive potentials through the coupling of nonreactive force fields. In this formalism, most of the implemented coupling terms are built using functional forms that depend on spatial coordinates, while parameters are fitted against reference data to model the change of chemistry between the participating nonreactive states. In this work, we demonstrate that the use of such coupling terms precludes the computation of the stress tensor for condensed phase systems and prevents the possibility to carry out EVB molecular dynamics in the isothermal-isobaric (NPT) ensemble.

View Article and Find Full Text PDF

We show that hybrid MnO/C heterojunctions can be used to design a storage device for spin-polarized charge: a spin capacitor. Hybridization at the carbon-metal oxide interface leads to spin-polarized charge trapping after an applied voltage or photocurrent. Strong electronic structure changes, including a 1-eV energy shift and spin polarization in the C lowest unoccupied molecular orbital, are then revealed by x-ray absorption spectroscopy, in agreement with density functional theory simulations.

View Article and Find Full Text PDF

Intermolecular single-electron transfer on electrically insulating films is a key process in molecular electronics and an important example of a redox reaction. Electron-transfer rates in molecular systems depend on a few fundamental parameters, such as interadsorbate distance, temperature and, in particular, the Marcus reorganization energy . This crucial parameter is the energy gain that results from the distortion of the equilibrium nuclear geometry in the molecule and its environment on charging.

View Article and Find Full Text PDF

We present calculations of vertical electron and hole attachment energies to the frontier orbitals of a pentacene molecule absorbed on multi-layer sodium chloride films supported by a copper substrate using a simplified density functional theory (DFT) method. The adsorbate and the film are treated fully within DFT, whereas the metal is treated implicitly by a perfect conductor model. We find that the computed energy gap between the highest and lowest unoccupied molecular orbitals-HOMO and LUMO -from the vertical attachment energies increases with the thickness of the insulating film, in agreement with experiments.

View Article and Find Full Text PDF

elucidates the interplay between wall-polarization, bands separation, charge-transfer excitation, and tunable electrostatics inside and outside the NT-cavity. The results suggest that integration of polarization-enhanced selective photocatalysis and chemical separation into one overall dipole-free material should be possible. Strategies are proposed to increase the NT polarization for maximally enhanced electron-hole separation.

View Article and Find Full Text PDF

It is known that individual metal atoms on insulating ionic films can occur in several different (meta)stable charge states, which can be reversibly switched in a controlled fashion. Here we show that the diffusion of gold adatoms on NaCl thin films depends critically on their charge state. Surprisingly, the anionic species has a lower diffusion barrier than the neutral one.

View Article and Find Full Text PDF

By means of scanning probe microscopy we demonstrate that Au(+) on NaCl films adsorbs in an embedded, slightly off-centered Cl-Cl bridge position and can be switched between two equivalent mirror-symmetric configurations using the attractive force exerted by a scanning probe tip. Density functional theory calculations demonstrate that the displacement of the Au atom from the centered position of the bridge configuration is accompanied by a large lifting of the closest Cl atom leading to significant changes in the local electrostatic field. Our findings suggest that Au(+) can be used to toggle the local electrostatic field.

View Article and Find Full Text PDF

We show charge-state manipulation of single Au adatoms on 2-11 monolayer (ML) thick NaCl films on Cu surfaces by attaching or detaching single electrons via the tip of an atomic force microscope (AFM). Tristate charge control (neutral, negatively charged, and positively charged) is achieved. On Cu(100) and Cu(111) supports, charge tristability is achieved independently of the NaCl layer thickness.

View Article and Find Full Text PDF

A simplified density functional theory (DFT) method for investigating charged adsorbates on an ultrathin, insulating film supported by a metal substrate is developed and presented. This new method is based on a previous DFT development that uses a perfect conductor (PC) model to approximate the electrostatic response of the metal substrate, while the film and the adsorbate are both treated fully within DFT (Scivetti and Persson 2013 J. Phys.

View Article and Find Full Text PDF

As a first step to meet the challenge to calculate the electronic structure and total energy of charged states of atoms and molecules adsorbed on ultrathin insulating films supported by a metallic substrate using density functional theory (DFT), we have developed a simplified new DFT scheme that only describes the electrostatic interaction of an external charged system with a metal surface. This purely electrostatic interaction is obtained from the assumption that the electron densities of the two fragments (charged system and metal surface) are non-overlapping and by neglecting non-local exchange-correlation effects such as the van der Waals interactions between the two fragments. In addition, the response of the metal surface to the electrostatic potential from the charged system is treated to linear order, whereas the charged system is treated fully within DFT.

View Article and Find Full Text PDF