Publications by authors named "Sciolino N"

The synthesis of constrained 12-membered rings is notably difficult. The main challenges result from constraints during the linear peptide cyclization. Attempts to overcome constraints through excessive activation frequently cause peptidyl epimerization, while insufficient activation of the C-terminus hampers cyclization and promotes intermolecular oligomer formation.

View Article and Find Full Text PDF

Attending to salient sensory attributes of food, such as tastes that are new, displeasing, or unexpected, allows the procurement of nutrients without food poisoning. Exposure to new tastes is known to increase norepinephrine (NE) release in taste processing forebrain areas, yet the central source for this release is unknown. Locus ceruleus norepinephrine neurons (LC-NE) emerge as a candidate in signaling salient information about taste, as other salient sensory stimuli (e.

View Article and Find Full Text PDF

Background: Contextual fear learning is heavily dependent on the hippocampus. Despite evidence that catecholamines contribute to contextual encoding and memory retrieval, the precise temporal dynamics of their release in the hippocampus during behavior is unknown. In addition, new animal models are required to probe the effects of altered catecholamine synthesis on release dynamics and contextual learning.

View Article and Find Full Text PDF

Analytical tools to study cell physiology are critical for optimizing drug-host interactions. Real time pulse chase NMR spectroscopy, RTPC-NMR, was introduced to monitor the kinetics of metabolite production in HEK 293T cells treated with COVID-19 vaccine-like lipid nanoparticles, LNPs, with and without mRNA. Kinetic flux parameters were resolved for the incorporation of isotopic label into metabolites and clearance of labeled metabolites from the cells.

View Article and Find Full Text PDF

Recent data demonstrate that noradrenergic neurons of the locus coeruleus (LC-NE) are required for fear-induced suppression of feeding, but the role of endogenous LC-NE activity in natural, homeostatic feeding remains unclear. Here, we found that LC-NE activity was suppressed during food consumption, and the magnitude of this neural response was attenuated as mice consumed more pellets throughout the session, suggesting that LC responses to food are modulated by satiety state. Visual-evoked LC-NE activity was also attenuated in sated mice, suggesting that satiety state modulates LC-NE encoding of multiple behavioral states.

View Article and Find Full Text PDF

High-resolution structural studies of proteins and protein complexes in a native eukaryotic environment present a challenge to structural biology. In-cell NMR can characterize atomic resolution structures but requires high concentrations of labeled proteins in intact cells. Most exogenous delivery techniques are limited to specific cell types or are too destructive to preserve cellular physiology.

View Article and Find Full Text PDF

The default mode network (DMN) of the brain is functionally associated with a wide range of behaviors. In this study, we used functional magnetic resonance imaging (fMRI), positron emission tomography (PET), and spectral fiber photometry to investigate the selective neuromodulatory effect of norepinephrine (NE)-releasing noradrenergic neurons in the locus coeruleus (LC) on the mouse DMN. Chemogenetic-induced tonic LC activity decreased cerebral blood volume (CBV) and glucose uptake and increased synchronous low-frequency fMRI activity within the frontal cortices of the DMN.

View Article and Find Full Text PDF

Neuroscience research is changing at an incredible pace due to technological innovation and recent national and global initiatives such as the BRAIN initiative. Given the wealth of data supporting the value of course-based undergraduate research experiences (CUREs) for students, we developed and assessed a neurotechnology CURE, . The goal of the course is to immerse undergraduate and graduate students in research and to explore technological advances in neuroscience.

View Article and Find Full Text PDF

Accumulating evidence indicates that disruption of galanin signaling is associated with neuropsychiatric disease, but the precise functions of this neuropeptide remain largely unresolved due to lack of tools for experimentally disrupting its transmission in a cell type-specific manner. To examine the function of galanin in the noradrenergic system, we generated and crossed two novel knock-in mouse lines to create animals lacking galanin specifically in noradrenergic neurons (Gal). We observed reduced levels of galanin peptide in pons, hippocampus, and prefrontal cortex of Gal mice, indicating that noradrenergic neurons are a significant source of galanin to those brain regions, while midbrain and hypothalamic galanin levels were comparable to littermate controls.

View Article and Find Full Text PDF

This review summarizes the results of in-cell Nuclear Magnetic Resonance, NMR, spectroscopic investigations of the eukaryotic and prokaryotic intrinsically disordered proteins, IDPs: α-synuclein, prokaryotic ubiquitin-like protein, Pup, tubulin-related neuronal protein, Tau, phenylalanyl-glycyl-repeat-rich nucleoporins, FG Nups, and the negative regulator of flagellin synthesis, FlgM. The results show that the cellular behavior of IDPs may differ significantly from that observed in the test tube.

View Article and Find Full Text PDF

Chemogenetic technologies, including the mutated human Gq-coupled M3 muscarinic receptor (hM3Dq), have greatly facilitated our ability to directly link changes in cellular activity to altered physiology and behavior. Here, we extend the hM3Dq toolkit with recombinase-responsive mouse lines that permit hM3Dq expression in virtually any cell type. These alleles encode a fusion protein designed to increase effective expression levels by concentrating hM3Dq to the cell body and dendrites.

View Article and Find Full Text PDF

Exercise promotes resilience to stress and increases galanin in the locus coeruleus (LC), but the question of whether changes in galanin signaling mediate the stress-buffering effects of exercise has never been addressed. To test the contributions of galanin to stress resilience, male Sprague Dawley rats received intracerebroventricular (ICV) cannulation for drug delivery and frontocortical cannulation for microdialysis, and were housed with or without a running wheel for 21d. Rats were acutely injected with vehicle or the galanin receptor antagonist M40 and exposed to a single session of either footshock or no stress.

View Article and Find Full Text PDF
Article Synopsis
  • Relapse is a major challenge in long-term drug addiction treatment, particularly with cocaine, which increases dopamine levels and drives craving behavior.
  • Research shows that the neuropeptide galanin and its synthetic analog, galnon, can reduce the rewarding effects of cocaine and mitigate hyperactivity and relapse behaviors in rats without affecting overall motor functions or food-seeking behaviors.
  • These findings suggest that targeting the dopamine system with compounds like galnon could be a promising strategy for treating cocaine dependence.
View Article and Find Full Text PDF

Although physical activity reduces anxiety in humans, the neural basis for this response is unclear. Rodent models are essential to understand the mechanisms that underlie the benefits of exercise. However, it is controversial whether exercise exerts anxiolytic-like potential in rodents.

View Article and Find Full Text PDF
Article Synopsis
  • Exercise can help reduce anxiety in humans, but its effects on anxiety in rodents are debated, prompting a study to see how stress affects this relationship.
  • A group of rats was given a running wheel for 21 days, with some receiving injections that influenced their behavior, allowing researchers to compare anxiety-like actions using various tests.
  • The findings indicated that, while exercise alone did not change anxiety-like behavior in non-injected rats, it did promote adaptive behaviors in stressed rats, linked to increased levels of galanin, a stress-related peptide.
View Article and Find Full Text PDF

Dysregulation in signaling of the endocannabinoid 2-arachidonoylglycerol (2-AG) is implicated in hyperresponsiveness to stress. We hypothesized that blockade of monoacylglycerol lipase (MGL), the primary enzyme responsible for 2-AG deactivation in vivo, would produce context-dependent anxiolytic effects in rats. Environmental aversiveness was manipulated by varying illumination of an elevated plus maze.

View Article and Find Full Text PDF

Peripheral cannabinoid receptors exert a powerful inhibitory control over pain initiation, but the endocannabinoid signal that normally engages this intrinsic analgesic mechanism is unknown. To address this question, we developed a peripherally restricted inhibitor (URB937) of fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of the endocannabinoid anandamide. URB937 suppressed FAAH activity and increased anandamide levels outside the rodent CNS.

View Article and Find Full Text PDF

Social deprivation in early life disrupts emotionality and attentional processes in humans. Rearing rats in isolation reproduces some of these abnormalities, which are attenuated by daily handling. However, the neurochemical mechanisms underlying these responses remain poorly understood.

View Article and Find Full Text PDF