Publications by authors named "Scicchitano D"

The microbial dimension of the terroir is crucial for wine quality, as microbiomes contribute to plant biofertilization, stress tolerance and pathogen suppression. While microbial terroir can act as a biological signature at large scale, data for local contexts is lacking, hindering the characterization of regional microbial diversity in vineyards. Here, we define the microbial terroir of vineyards across the 12 sub-areas (Additional Geographic Units -AGUs) of the "Consorzio del Vino Nobile di Montepulciano DOCG" PDO area (Italy), a world-renowned wine-producing region.

View Article and Find Full Text PDF
Article Synopsis
  • * Results showed increased diversity in the children's GM, higher butyrate production, and growth of beneficial probiotic species without introducing harmful traits.
  • * This pilot study suggests the possibility of enhancing human health through microbiome exchange with natural ecosystems, supporting a broader initiative to explore GM rewilding in line with the One Health approach.
View Article and Find Full Text PDF

Aiming to shed light on the biology of wild ruminants, we investigated the gut microbiome seasonal dynamics of the Alpine ibex () from the Central Italian Alps. Feces were collected in spring, summer, and autumn during non-invasive sampling campaigns. Samples were analyzed by 16S rRNA amplicon sequencing, shotgun metagenomics, as well as targeted and untargeted metabolomics.

View Article and Find Full Text PDF

Despite their critical roles in marine ecosystems, only few studies have addressed the gut microbiome (GM) of cetaceans in a comprehensive way. Being long-living apex predators with a carnivorous diet but evolved from herbivorous ancestors, cetaceans are an ideal model for studying GM-host evolutionary drivers of symbiosis and represent a valuable proxy of overall marine ecosystem health. Here, we investigated the GM of eight different cetacean species, including both Odontocetes (toothed whales) and Mysticetes (baleen whales), by means of 16S rRNA-targeted amplicon sequencing.

View Article and Find Full Text PDF

Background: Antimicrobial resistance has been identified as a major threat to global health. The pig food chain is considered an important source of antimicrobial resistance genes (ARGs). However, there is still a lack of knowledge on the dispersion of ARGs in pig production system, including the external environment.

View Article and Find Full Text PDF

The human gut microbiome is losing biodiversity, due to the "microbiome modernization process" that occurs with urbanization. To keep track of it, here we applied shotgun metagenomics to the gut microbiome of the Baka, a group of forager-horticulturalists from Cameroon, who combine hunting and gathering with growing a few crops and working for neighboring Bantu-speaking farmers. We analyzed the gut microbiome of individuals with different access to and use of wild plant and processed foods, to explore the variation of their gut microbiome along the cline from hunter-gatherer to agricultural subsistence patterns.

View Article and Find Full Text PDF

Background: The clam Chamelea gallina is an ecologically and economically important marine species in the Northwestern Adriatic Sea, which currently suffers from occasional, and still unexplained, widespread mortality events. In order to provide some glimpses in this direction, this study explores the connections between microbiome variations at the clam-sediment interface and the nutritional status of clams collected at four Italian production sites along the Emilia Romagna coast, with different mortality incidence, higher in the Northern sites and lower in the Southern sites.

Results: According to our findings, each production site showed a peculiar microbiome arrangement at the clam-sediment interface, with features that clearly differentiate the Northern and Southern sites, with the latter also being associated with a better nutritional status of the animal.

View Article and Find Full Text PDF

Microbiome networking analysis has emerged as a powerful tool for studying the complex interactions among microorganisms in various ecological niches, including the human body and several environments. This analysis has been used extensively in both human and environmental studies, revealing key taxa and functional units peculiar to the ecosystem considered. In particular, it has been mainly used to investigate the effects of environmental stressors, such as pollution, climate change or therapies, on host-associated microbial communities and ecosystem function.

View Article and Find Full Text PDF

Poultry farms are hotspots for the development and spread of antibiotic resistance genes (ARGs), due to high stocking densities and extensive use of antibiotics, posing a threat of spread and contagion to workers and the external environment. Here, we applied shotgun metagenome sequencing to characterize the gut microbiome and resistome of poultry, workers and their households - also including microbiomes from the internal and external farm environment - in three different farms in Italy during a complete rearing cycle. Our results highlighted a relevant overlap among the microbiomes of poultry, workers, and their families (gut and skin), with clinically relevant ARGs and associated mobile elements shared in both poultry and human samples.

View Article and Find Full Text PDF

To understand the microbiome composition and interplay among bacterial communities in different compartments of a coupled freshwater aquaponics system growing flathead grey mullet (Mugil cephalus) and lettuces (Lactuca sativa), 16S rRNA gene amplicon sequencing of the V3-V4 region was analysed from each compartment (fish intestine, water from the sedimentation tank, bioballs from the biological filter, water and biofilm from the hydroponic unit, and lettuce roots). The bacterial communities of each sample group showed a stable diversity during all the trial, except for the fish gut microbiota, which displayed lower alpha diversity values. Regarding beta diversity, the structure of bacterial communities belonging to the biofilm adhering to the hydroponic tank walls, bioballs, and lettuce roots resembled each other (weighted and unweighted UniFrac distances), while bacteria from water samples also clustered together.

View Article and Find Full Text PDF

Fabry disease (FD) is an X-linked metabolic disease caused by a deficiency in α-galactosidase A (α-Gal A) activity. This causes accumulation of glycosphingolipids, especially globotriaosylceramide (Gb3), in different cells and organs. Neuropathic pain and gastrointestinal (GI) symptoms, such as abdominal pain, nausea, diarrhea, constipation, and early satiety, are the most frequent symptoms reported by FD patients and severely affect their quality of life.

View Article and Find Full Text PDF

Body lesions in pigs are a common welfare concern, particularly during the weaning period. These lesions can lead to pain, infection, and impaired mobility, resulting in reduced growth performance and increased mortality. Moreover, weaning stress can affect gut microbiota, immune response and increase the oxidative stress of piglets during this transition period.

View Article and Find Full Text PDF

Marine mussels, especially Mytilus galloprovincialis, are well-established sentinel species, being naturally resistant to the exposure to multiple xenobiotics of natural and anthropogenic origin. Even if the response to multiple xenobiotic exposure is well known at the host level, the role of the mussel-associated microbiome in the animal response to environmental pollution is poorly explored, despite its potential in xenobiotic detoxification and its important role in host development, protection, and adaptation. Here, we characterized the microbiome-host integrative response of M.

View Article and Find Full Text PDF

Introduction: Wines produced from the same grape cultivars but in different locations possess distinctive qualities leading to different consumer's appreciation, preferences, and thus purchase choices. Here, we explore the possible importance of microbiomes at the soil-plant interface as a determinant of the terroir properties in grapevine production, which confer specific growth performances and wine chemo-sensory properties at the local scale.

Methods: In particular, we investigated the variation in microbial communities associated with the roots of cultivar Lambrusco, as well as with surrounding bulk soils, in different vineyards across the "Consorzio Tutela Lambrusco DOC" protected designation of origin area (PDO, Emilia Romagna, Italy), considering viticultural sites located both inside and outside the consortium in two different seasons (June and November 2021).

View Article and Find Full Text PDF

The current study evaluated the effects of hydrolyzable and condensed tannins from chestnut and quebracho wood, respectively (TSP, Silvafeed), on zebrafish with intestinal inflammation induced by a plant-based diet (basal diet). Four experimental diets were prepared as follows: the basal diet + 0 TSP, the basal diet + TSP at 0.9 g/kg of feed, the basal diet + TSP at 1.

View Article and Find Full Text PDF

Because of their recognized global importance, there is now the urgent need to map diversity and distribution patterns of marine microbial communities. Even if available studies provided some advances in the understanding the biogeographical patterns of marine microbiomes at the global scale, their degree of plasticity at the local scale it is still underexplored, and functional implications still need to be dissected. In this scenario here we provide a synoptical study on the microbiomes of the water column and surface sediments from 19 sites in a 130 km area located 13.

View Article and Find Full Text PDF

There is a growing interest in the named "acidic sterolbiome" and in the genetic potential of the gut microbiome (GM) to modify bile acid (BA) structure. Indeed, the qualitative composition of BAs in feces correlates with the bowel microorganisms and their collective genetic material. GM is responsible for the production of BA metabolites, such as secondary and oxo-BAs.

View Article and Find Full Text PDF

Aquaculture plays a major role in the coastal economy of the Mediterranean Sea. This raises the issue of the impact of fish cages on the surrounding environment. Here, we explore the impact of aquaculture on the composition of the digestive gland microbiome of a representative locally dwelling wild holobiont, the grazer gastropod , at an aquaculture facility located in Southern Sicily, Italy.

View Article and Find Full Text PDF

Organic acids (OA) and nature-identical compounds (NIC) such as monoterpenes and aldehydes are well-known growth and health promoters in terrestrial livestock while their application for fish production is recent and their mechanisms of action require further study. Hence, this study tested the increasing dietary level (D0, D250, D500, D1000; 0, 250, 500 and 1000 mg kg feed respectively) of a microencapsulated blend containing citric and sorbic acid, thymol and vanillin over 82 days on rainbow trout to assess the effects on growth, feed utilization, intestine cytokine gene expression and gut microbiota (GM). Furthermore, the effects on intestinal cytokine gene expression and GM were also explored after one week at high water temperature (23 °C).

View Article and Find Full Text PDF

In March of 2017, the Russian LGBT Network received their first reports of police violence against individuals in Chechnya because of their perceived sexual orientation. In the following months, news spread of a campaign of forced disappearances and torture specifically targeting suspected homosexual men. Between December, 2018 and February, 2019, police carried out another wave of unlawful detentions of men on the basis of their sexual orientation.

View Article and Find Full Text PDF

Altered protein function due to mutagenesis plays an important role in disease development. This is perhaps most evident in tumorigenesis and the associated loss or gain of function of tumor-suppressor genes and oncogenes. The extent to which lesion-induced transcriptional mutagenesis (TM) influences protein function and its contribution to the development of disease is not well understood.

View Article and Find Full Text PDF

Simple sequence repeats (SSRs) are found throughout the genome, and under some conditions can change in length over time. Germline and somatic expansions of trinucleotide repeats are associated with a series of severely disabling illnesses, including Huntington's disease. The underlying mechanisms that effect SSR expansions and contractions have been experimentally elusive, but models suggesting a role for DNA repair have been proposed, in particular the involvement of transcription-coupled nucleotide excision repair (TCNER) that removes transcription-blocking DNA damage from the transcribed strand of actively expressed genes.

View Article and Find Full Text PDF

The most common, oxidatively generated lesion in cellular DNA is 8-oxo-7,8-dihydroguanine, which can be oxidized further to yield highly mutagenic spiroiminodihydantoin (Sp) and 5-guanidinohydantoin (Gh) in DNA. In human cell-free extracts, both lesions can be excised by base excision repair and global genomic nucleotide excision repair. However, it is not known if these lesions can be removed by transcription-coupled DNA repair (TCR), a pathway that clears lesions from DNA that impede RNA synthesis.

View Article and Find Full Text PDF

DNA adducts derived from carcinogenic polycyclic aromatic hydrocarbons like benzo[a]pyrene (B[a]P) and benzo[c]phenanthrene (B[c]Ph) impede replication and transcription, resulting in aberrant cell division and gene expression. Global nucleotide excision repair (NER) and transcription-coupled DNA repair (TCR) are among the DNA repair pathways that evolved to maintain genome integrity by removing DNA damage. The interplay between global NER and TCR in repairing the polycyclic aromatic hydrocarbon-derived DNA adducts (+)-trans-anti-B[a]P-N(6)-dA, which is subject to NER and blocks transcription in vitro, and (+)-trans-anti-B[c]Ph-N(6)-dA, which is a poor substrate for NER but also blocks transcription in vitro, was tested.

View Article and Find Full Text PDF

O(6)-Methylguanine (O(6)-meG), which is produced in DNA following exposure to methylating agents, instructs human RNA polymerase II to mis-insert bases opposite the lesion during transcription. In this study, we examined the effect of O(6)-meG on transcription in human cells and investigated the subsequent effects on protein function following translation of the resulting mRNA. In HEK293 cells, O(6)-meG induced incorporation of uridine or cytidine in nascent RNA opposite the adduct.

View Article and Find Full Text PDF