Publications by authors named "Schwettmann A"

We present a microwave source that is controlled by a commercially available field-programmable gate array (FPGA). Using an FPGA allows for precise control of the time dependent microwave-dressing applied to a sample of trapped cold atoms. We test our microwave source by exciting Rabi oscillations in a Na spinor Bose-Einstein condensate.

View Article and Find Full Text PDF

The SU(1,1) interferometer was originally conceived as a Mach-Zehnder interferometer with the beam-splitters replaced by parametric amplifiers. The parametric amplifiers produce states with correlations that result in enhanced phase sensitivity. = 1 spinor Bose-Einstein condensates (BECs) can serve as the parametric amplifiers for an atomic version of such an interferometer by collisionally producing entangled pairs of | = 1, = ±1〉 atoms.

View Article and Find Full Text PDF

It is clearly important to pursue atomic standards for quantities like electromagnetic fields, time, length, and gravity. We have recently shown using Rydberg states that Rb atoms in a vapor cell can serve as a practical, compact standard for microwave electric field strength. Here we demonstrate for the first time that Rb atoms excited in a vapor cell can also be used for vector microwave electrometry by using Rydberg-atom electromagnetically induced transparency.

View Article and Find Full Text PDF

We present experimental observations of coherent spin-population oscillations in a cold thermal, Bose gas of spin-1 23Na atoms. The population oscillations in a multi-spatial-mode thermal gas have the same behavior as those observed in a single-spatial-mode antiferromagnetic spinor Bose-Einstein condensate. We demonstrate this by showing that the two situations are described by the same dynamical equations, with a factor of 2 change in the spin-dependent interaction coefficient, which results from the change to particles with distinguishable momentum states in the thermal gas.

View Article and Find Full Text PDF

We present a locking circuit for external cavity diode lasers implemented on a field-programmable gate array (FPGA). The main advantages over traditional non-FPGA-based locking circuits are rapid reconfigurability without any soldering and a friendly user interface. We characterize the lock quality by measuring the linewidth of a locked laser using electromagnetically induced transparency in a Rb vapor cell.

View Article and Find Full Text PDF

In this work, we study the role of the ac Stark effects on the excitation of nS1/2 cold Rydberg atoms produced in a rubidium magneto-optical trap. We have observed an atomic population in the nP3/2 state after excitation of nS1/2 for 29 View Article and Find Full Text PDF

We report the implementation of a tunable, narrow-spectral-bandwidth, pulsed, four-pass dye-laser amplifier with strongly reduced amplified spontaneous emission. We present temporal pulse profiles, pulse spectra, and gain measurements of the amplifier output for the case of Coumarin 307 dye as the gain medium, seeded at wavelengths of approximately 508 nm and pumped at 355 nm.

View Article and Find Full Text PDF

Stark deceleration is one of the few methods that can be used to slow polyatomic molecules. We present calculations of Stark shift energies, a quantitative analysis of nonadiabatic transition probabilities, and orientational distribution functions applicable to typical Stark slowing conditions for the two small asymmetric rotors nitromethane and acetaldehyde. We show that asymmetric polyatomic molecules are good candidates for Stark slowing.

View Article and Find Full Text PDF

Multiple scattering is studied in a Cs magneto-optical trap (MOT). We use two Abel inversion algorithms to recover density distributions of the MOT from fluorescence images. Deviations of the density distribution from a Gaussian are attributed to multiple scattering.

View Article and Find Full Text PDF

We study the random growth of surfaces from within the perspective of a single column, namely, the fluctuation of the column height around the mean value, y (t) identical with h (t)-, which is depicted as being subordinated to a standard fluctuation-dissipation process with friction gamma. We argue that the main properties of Kardar-Parisi-Zhang theory, in one dimension, are derived by identifying the distribution of return times to y (0) =0, which is a truncated inverse power law, with the distribution of subordination times. The agreement of the theoretical prediction with the numerical treatment of the (1+1) -dimensional model of ballistic deposition is remarkably good, in spite of the finite-size effects affecting this model.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmp0k9scmlnifh0jci2otl2pt26latc6n): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once