Publications by authors named "Schwederski M"

Background: Bacteria such as Staphylococcus aureus induce myocardial dysfunction in vivo. To rectify conflicting evidence about the role of TLR2 signaling and cardiac dysfunction, we hypothesized that the specific TLR2 agonist purified lipoteichoic acid (LTA) from S. aureus contributes to cardiac dysfunction in vitro and in vivo.

View Article and Find Full Text PDF

Background: Aim was to elucidate the role of toll-like receptor 9 (TLR9) in cardiac inflammation and septic heart failure in a murine model of polymicrobial sepsis.

Methods: Sepsis was induced via colon ascendens stent peritonitis (CASP) in C57BL/6 wild-type (WT) and TLR9-deficient (TLR9-D) mice. Bacterial load in the peritoneal cavity and cardiac expression of inflammatory mediators were determined at 6, 12, 18, 24, and 36 h.

View Article and Find Full Text PDF

The aim of the study was to investigate whether pre-conditioning with CpG-oligodeoxynucleotides (CpG-ODN) may change cardiac ischemia/reperfusion (I/R)-dependent inflammation and modulates infarct size and cardiac performance. WT and TLR9-deficient mice were pre-treated with 1668-, 1612- and H154-thioate or D-Gal as control. Priming with 1668-thioate significantly induced inflammatory mediators in the serum and a concomitant increase of immune cells in the blood and spleen of WT mice.

View Article and Find Full Text PDF

Severe sepsis and septic shock are often accompanied by acute cardiovascular depression. Lipopolysaccharide (LPS) signaling via Toll-like receptor 4 (TLR4) can induce septic organ dysfunction. The aim of this study was to elucidate the in vivo impact of pharmacological TLR4 antagonism on LPS-induced cardiovascular depression using eritoran tetrasodium (E5564).

View Article and Find Full Text PDF

Aims: Toll-like receptor 4 (TLR4) recognizes lipopolysaccharides and endogenous ligands released after organ injury. Deficiency of TLR4 attenuates the development of left ventricular hypertrophy after transverse aortic constriction (TAC) in mice. We hypothesized that application of the TLR4 antagonist eritoran may also reduce cardiac hypertrophy after TAC surgery.

View Article and Find Full Text PDF

Objective: To determine whether systemically administered TLR ligands differentially modulate pulmonary inflammation.

Methods: Equipotent doses of LPS (20 mg/kg), CpG-ODN (1668-thioat 1 nmol/g), or LTA (15 mg/kg) were determined via TNF activity assay. C57BL/6 mice were challenged intraperitoneally.

View Article and Find Full Text PDF

Aims: Myocardial function is severely compromised during sepsis. Several underlying mechanisms have been proposed. The innate immune system, i.

View Article and Find Full Text PDF

Background: Bacterial DNA containing motifs of unmethylated CpG dinucleotides (CpG-ODN) initiate an innate immune response mediated by the pattern recognition receptor Toll-like receptor 9 (TLR9). This leads in particular to the expression of proinflammatory mediators such as tumor necrosis factor (TNF-alpha) and interleukin-1beta (IL-1beta). TLR9 is expressed in human and murine pulmonary tissue and induction of proinflammatory mediators has been linked to the development of acute lung injury.

View Article and Find Full Text PDF