Secondary messengers, such as calcium ions (Ca), are integral parts of a system that transduces environmental stimuli into appropriate cellular responses. Different abiotic and biotic stresses as well as developmental processes trigger temporal increases in cytosolic free Ca levels by an influx from external and internal stores. Stimulus-specificity is obtained by a certain amplitude, duration, oscillation and localisation of the response.
View Article and Find Full Text PDFSelected β-amino acids, such as β-aminobutyric acid (BABA) and R-β-homoserine (RBH), can prime plants for resistance against a broad spectrum of diseases. Here, we describe a genome-wide screen of fully annotated Arabidopsis thaliana T-DNA insertion lines for impaired in RBH-induced immunity (iri) mutants against the downy mildew pathogen Hyaloperonospora arabidopsidis, yielding 104 lines that were partially affected and four lines that were completely impaired in RBH-induced resistance (IR). We confirmed the iri1-1 mutant phenotype with an independent T-DNA insertion line in the same gene, encoding the high-affinity amino acid transporter LYSINE HISTIDINE TRANSPORTER 1 (LHT1).
View Article and Find Full Text PDFExternal and internal signals can prime the plant immune system for a faster and/or stronger response to pathogen attack. β-aminobutyric acid (BABA) is an endogenous stress metabolite that induces broad-spectrum disease resistance in plants. BABA perception in Arabidopsis is mediated by the aspartyl tRNA synthetase IBI1, which activates priming of multiple immune responses, including callose-associated cell wall defenses that are under control by abscisic acid (ABA).
View Article and Find Full Text PDFThe rhizobiome is an important regulator of plant growth and health. Plants shape their rhizobiome communities through production and release of primary and secondary root metabolites. Benzoxazinoids (BXs) are common tryptophan-derived secondary metabolites in grasses that regulate belowground and aboveground biotic interactions.
View Article and Find Full Text PDFβ-Aminobutyric acid (BABA) induces broad-spectrum disease resistance, but also represses plant growth, which has limited its exploitation in crop protection. BABA perception relies on binding to the aspartyl-tRNA synthetase (AspRS) IBI1, which primes the enzyme for secondary defense activity. This study aimed to identify structural BABA analogues that induce resistance without stunting plant growth.
View Article and Find Full Text PDFThe impacts of rising atmospheric CO concentrations on plant disease have received increasing attention, but with little consensus emerging on the direct mechanisms by which CO shapes plant immunity. Furthermore, the impact of sub-ambient CO concentrations, which plants have experienced repeatedly over the past 800 000 yr, has been largely overlooked. A combination of gene expression analysis, phenotypic characterisation of mutants and mass spectrometry-based metabolic profiling was used to determine development-independent effects of sub-ambient CO (saCO ) and elevated CO (eCO ) on Arabidopsis immunity.
View Article and Find Full Text PDFPhagocytosis and inflammation within the lungs is crucial for host defense during bacterial pneumonia. Triggering receptor expressed on myeloid cells (TREM)-2 was proposed to negatively regulate TLR-mediated responses and enhance phagocytosis by macrophages, but the role of TREM-2 in respiratory tract infections is unknown. Here, we established the presence of TREM-2 on alveolar macrophages (AM) and explored the function of TREM-2 in the innate immune response to pneumococcal infection in vivo.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
April 2012
The authors of J. Immunol. 184, 725-735 respond to the article by Rupp (2012), Acta Cryst.
View Article and Find Full Text PDFAsparagine deamidation is one of the important determinants of protein thermostability. Here, structure based mutagenesis has been done in order to probe the role of Asn residues in thermostability of a Ca independent Bacillus sp. KR-8104 α-amylase (BKA).
View Article and Find Full Text PDFThe initial line of defense against infection is sustained by the innate immune system. Together, membrane-bound Toll-like receptors and cytosolic nucleotide-binding domain and leucine-rich repeat-containing receptors (NLR) play key roles in the innate immune response by detecting bacterial and viral invaders as well as endogenous stress signals. NLRs are multi-domain proteins with varying N-terminal effector domains that are responsible for regulating downstream signaling events.
View Article and Find Full Text PDFHuntington's disease is an inherited and incurable neurodegenerative disorder caused by an abnormal polyglutamine (polyQ) expansion in huntingtin (encoded by HTT). PolyQ length determines disease onset and severity, with a longer expansion causing earlier onset. The mechanisms of mutant huntingtin-mediated neurotoxicity remain unclear; however, mitochondrial dysfunction is a key event in Huntington's disease pathogenesis.
View Article and Find Full Text PDFNucleotide-binding oligomerization domain-containing protein (NOD)1 and NOD2 are intracellular pattern recognition receptors (PRRs) of the nucleotide-binding domain and leucine-rich repeat containing (NLR) gene family involved in innate immune responses. Their centrally located NACHT domain displays ATPase activity and is necessary for activation and oligomerization leading to inflammatory signaling responses. Mutations affecting key residues of the ATPase domain of NOD2 are linked to severe auto-inflammatory diseases, such as Blau syndrome and early-onset sarcoidosis.
View Article and Find Full Text PDFPathogenesis by Bacillus anthracis requires coordination between two distinct activities: plasmid-encoded virulence factor expression (which protects vegetative cells from immune surveillance during outgrowth and replication) and chromosomally encoded sporulation (required only during the final stages of infection). Sporulation is regulated by at least five sensor histidine kinases that are activated in response to various environmental cues. One of these kinases, BA2291, harbors a sensor domain that has ∼35% sequence identity with two plasmid proteins, pXO1-118 and pXO2-61.
View Article and Find Full Text PDFPQQ is an exogenous, tricyclic, quino-cofactor for a number of bacterial dehydrogenases. The final step of PQQ formation is catalyzed by PqqC, a cofactorless oxidase. This study focuses on the activation of molecular oxygen in an enzyme active site without metal or cofactor and has identified a specific oxygen binding and activating pocket in PqqC.
View Article and Find Full Text PDFHerpes simplex virus (HSV) glycoprotein B (gB) is an integral part of the multicomponent fusion system required for virus entry and cell-cell fusion. Here we investigated the mechanism of viral neutralization by the monoclonal antibody (MAb) 2c, which specifically recognizes the gB of HSV type 1 (HSV-1) and HSV-2. Binding of MAb 2c to a type-common discontinuous epitope of gB resulted in highly efficient neutralization of HSV at the postbinding/prefusion stage and completely abrogated the viral cell-to-cell spread in vitro.
View Article and Find Full Text PDFIn response to many apoptotic stimuli, oligomerization of Bax is essential for mitochondrial outer membrane permeabilization and the ensuing release of cytochrome c. These events are accompanied by mitochondrial fission that appears to require Drp1, a large GTPase of the dynamin superfamily. Loss of Drp1 leads to decreased cytochrome c release by a mechanism that is poorly understood.
View Article and Find Full Text PDFTwo apical caspases, caspase-8 and -10, are involved in the extrinsic death receptor pathway in humans, but it is mainly caspase-8 in its apoptotic and nonapoptotic functions that has been an intense research focus. In this study we concentrate on caspase-10, its mechanism of activation, and the role of the intersubunit cleavage. Our data obtained through in vitro dimerization assays strongly suggest that caspase-10 follows the proximity-induced dimerization model for apical caspases.
View Article and Find Full Text PDFPyrroloquinoline quinone [4,5-dihydro-4,5-dioxo-1H-pyrrolo[2,3-f]quinoline-2,7,9-tricarboxylic acid (PQQ)] is a bacterial cofactor in numerous alcohol dehydrogenases including methanol dehydrogenase and glucose dehydrogenase. Its biosynthesis in Klebsiella pneumoniae is facilitated by six genes, pqqABCDEF and proceeds by an unknown pathway. PqqC is one of two metal free oxidases of known structure and catalyzes the last step of PQQ biogenesis which involves a ring closure and an eight-electron oxidation of the substrate [3a-(2-amino-2-carboxyethyl)-4,5-dioxo-4,5,6,7,8,9-hexahydroquinoline-7,9-dicarboxylic acid (AHQQ)].
View Article and Find Full Text PDFThe innate immune system provides an initial line of defense against infection. Nucleotide-binding domain- and leucine-rich repeat-containing protein (NLR or (NOD-like)) receptors play a critical role in the innate immune response by surveying the cytoplasm for traces of intracellular invaders and endogenous stress signals. NLRs themselves are multi-domain proteins.
View Article and Find Full Text PDFProteins of the nucleotide-binding domain, leucine-rich repeat (NLR)-containing family recently gained attention as important components of the innate immune system. Although over 20 of these proteins are present in humans, only a few members including the cytosolic pattern recognition receptors NOD1, NOD2, and NLRP3 have been analyzed extensively. These NLRs were shown to be pivotal for mounting innate immune response toward microbial invasion.
View Article and Find Full Text PDFMitochondrial dysfunction and synaptic loss are among the earliest events linked to Alzheimer's disease (AD) and might play a causative role in disease onset and progression. The underlying mechanisms of mitochondrial and synaptic dysfunction in AD remain unclear. We previously reported that nitric oxide (NO) triggers persistent mitochondrial fission and causes neuronal cell death.
View Article and Find Full Text PDFPreviously, defined naturally occurring isoforms of allergenic proteins were classified as hypoallergens and therefore suggested as an agent for immunotherapy in the future. In this paper, we report for the first time the molecular background of hypoallergenicity by comparing the immunological behavior of hyperallergenic Betula verrucosa major Ag 1a (Bet v 1a) and hypoallergenic Bet v 1d, two isoforms of the major birch pollen allergen Betula verrucosa 1. Despite their cross-reactivity, Bet v 1a and Bet v 1d differ in their capacity to induce protective Ab responses in BALB/c mice.
View Article and Find Full Text PDFThe resonance assignments of the human NLRP7 PYD domain have been determined based on triple-resonance experiments using uniformly [(13)C,(15)N]-labeled protein. This assignment is the first step towards the 3D structure determination of the NLRP7 PYD domain.
View Article and Find Full Text PDF