Available evidence suggests that various medical/rehabilitation treatments evoke multiple effects on blood hemostasis. It was therefore the aim of our study to examine whether fascial manipulation, vibration exercise, motor imagery, or neuro-muscular electrical stimulation can activate the coagulation system, and, thereby, expose patients to thrombotic risk. Ten healthy young subject were enrolled in the study.
View Article and Find Full Text PDFThe primary objective of urolithiasis therapy is complete stone removal and highest stone-clearance rates possible to minimize recurrence. A novel approach that employs a magnetic suspension and a magnetic probe for the passive collection and removal of small residual fragments was developed. This study assessed the feasibility of this system in porcine models.
View Article and Find Full Text PDFThis work explores the complex hydrodynamics in magnetophoretic microfluidic processes, focusing on the interplay of forces and particle concentrations. The study employs a combined simulation and experimental approach to investigate the impact of magnetophoresis on magneto-responsive nanoparticles (MNPs) and their environment, including non-magneto-responsive nanoparticles (non-MNPs) in a microfluidic system. Our findings reveal that the motion of MNPs induces a hydrodynamic convective motion of non-MNPs, significantly affecting the separation efficiency and purity of the particles.
View Article and Find Full Text PDFContinuous flow magnetophoresis represents a common technique for actively separating particles within a fluid. For separation systems design, accurately predicting particle behaviour helps to characterise system performance, typically measured by the separation efficiency (SE). While finite element method (FEM) simulations offer high accuracy, they demand extensive computational resources.
View Article and Find Full Text PDFMetal-organic framework (MOF) modified with iron oxide, FeO-MOF, is a perspective drug delivery agent, enabling magnetic control and production of active hydroxyl radicals, •OH, via the Fenton reaction. This paper studies cytotoxic and radical activities of Fe-containing nanoparticles (NPs): FeO-MOF and its components - bare FeO and MOF (MIL-88B). Luminous marine bacteria Photobacteriumphosphoreum were used as a model cellular system to monitor bioeffects of the NPs.
View Article and Find Full Text PDFThis review systematically investigates the critical role of natural binding proteins (NBPs), encompassing DNA-, RNA-, carbohydrate-, fatty acid-, and chitin-binding proteins, in the realms of oncology and diagnostics. In an era where cancer continues to pose significant challenges to healthcare systems worldwide, the innovative exploration of NBPs offers a promising frontier for advancing both the diagnostic accuracy and therapeutic efficacy of cancer management strategies. This manuscript provides an in-depth examination of the unique mechanisms by which NBPs interact with specific molecular targets, highlighting their potential to revolutionize cancer diagnostics and therapy.
View Article and Find Full Text PDFRSC Adv
May 2024
Iron-containing metal-organic frameworks are promising Fenton catalysts. However, the absence of additional modifiers has proven difficult due to the low reaction rates and the inability to manipulate the catalysts. We hypothesize that the production of iron oxide NPs in the presence of a metal-organic framework will increase the rate of the Fenton reaction and lead to the production of particles that can be magnetically manipulated without changing the structure of the components.
View Article and Find Full Text PDFNew and highly selective stationary phases for affinity membrane chromatography have the potential to significantly enhance the efficiency and specificity of therapeutic protein purification by reduced mass transfer limitations. This work developed and compared different immobilization strategies for recombinant Protein A ligands to a gold-sputtered polymer membrane for antibody separation in terms of functionalization and immobilization success, protein load, and stability. Successful, functionalization was validated via X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) can kill bacteria by disrupting their cytoplasmic membrane, which reduces the tendency of antibacterial resistance compared to conventional antibiotics. Their possible toxicity to human cells, however, limits their applicability. The combination of magnetically controlled drug delivery and supramolecular engineering can help to reduce the dosage of AMPs, control the delivery, and improve their cytocompatibility.
View Article and Find Full Text PDFMetformin is the most commonly prescribed glucose-lowering drug for the treatment of type 2 diabetes. The aim of this study was to investigate whether metformin is capable of impeding the oxidation of LDL, a crucial step in the development of endothelial dysfunction and atherosclerosis. LDL was oxidized by addition of CuCl in the presence of increasing concentrations of metformin.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
September 2023
Background & Aims: Transport functions of albumin are of clinical and pharmacological interest and are determined by albumin's properties like posttranslational modifications or bound ligands. Both are affected in pathological conditions and in therapeutic grade albumin solutions. The term effective albumin concentration was introduced as a measure of functionally intact albumin.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
August 2023
Coated iron oxide nanoparticles (IONs) are promising candidates for various applications in nanomedicine, including imaging, magnetic hyperthermia, and drug delivery. The application of IONs in nanomedicine is influenced by factors such as biocompatibility, surface properties, agglomeration, degradation behavior, and thrombogenicity. Therefore, it is essential to investigate the effects of coating material and thickness on the behavior and performance of IONs in the human body.
View Article and Find Full Text PDFIron oxide nanoparticles (IONs) are of great interest in nanomedicine for imaging, drug delivery, or for hyperthermia treatment. Although many research groups have focused on the synthesis and application of IONs in nanomedicine, little is known about the influence of the surface properties on the particles' behavior in the human body. This study analyzes the impact of surface coatings (dextran, polyvinyl alcohol, polylactide-co-glycolide) on the nanoparticles' cytocompatibility, agglomeration, degradation, and the resulting oxidative stress induced by the particle degradation.
View Article and Find Full Text PDFFor industrial processes, a fast, precise, and reliable method of determining the physiological state of yeast cells, especially viability, is essential. However, an increasing number of processes use magnetic nanoparticles (MNPs) for yeast cell manipulation, but their impact on yeast cell viability and the assay itself is unclear. This study tested the viability of Saccharomyces pastorianus ssp.
View Article and Find Full Text PDFDespite the fact that yeast is a widely used microorganism in the food, beverage, and pharmaceutical industries, the impact of viability and age distribution on cultivation performance has yet to be fully understood. For a detailed analysis of fermentation performance and physiological state, we introduced a method of magnetic batch separation to isolate daughter and mother cells from a heterogeneous culture. By binding functionalised iron oxide nanoparticles, it is possible to separate the chitin-enriched bud scars by way of a linker protein.
View Article and Find Full Text PDFHypothesis: The high binding affinity of iron(oxyhydr)oxides for phosphate has recently been used in medicine to treat hyperphosphatemia, an abnormally elevated phosphate concentration in the blood. For iron(oxyhydr)oxide nanoparticles, the composition of the organic shell has a more significant influence on their interaction with phosphate than is often assumed. This study shows different mechanisms in phosphate binding, using the example of two similar new phosphate-binding agents.
View Article and Find Full Text PDFCarboxymethyl-dextran (CMD)-coated iron oxide nanoparticles (IONs) are of great interest in nanomedicine, especially for applications in drug delivery. To develop a magnetically controlled drug delivery system, many factors must be considered, including the composition, surface properties, size and agglomeration, magnetization, cytocompatibility, and drug activity. This study reveals how the CMD coating thickness can influence these particle properties.
View Article and Find Full Text PDFNanoparticles are acquiring an ever increasing role in analytical technologies for enhanced applications such as signalling of hazardous dyes. One challenge for the synthesis of hybrid nanomaterials is to control their shape, size and properties. The colloidal and interfacial properties of initial nanoparticles are decisive for the formation, growth and characteristics of nanohybrids.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
October 2022
The understanding of interactions between proteins with silica surface is crucial for a wide range of different applications: from medical devices, drug delivery and bioelectronics to biotechnology and downstream processing. We show the application of EISM (Effective Implicit Surface Model) for discovering the set of peptide interactions with silica surface. The EISM is employed for a high-speed computational screening of peptides to model the binding affinity of small peptides to silica surfaces.
View Article and Find Full Text PDFAs a subspecies of extracellular vesicles (EVs), exosomes have provided promising results in diagnostic and theranostic applications in recent years. The nanometer-sized exosomes can be extracted by liquid biopsy from almost all body fluids, making them especially suitable for mainly non-invasive point-of-care (POC) applications. To achieve this, exosomes must first be separated from the respective biofluid.
View Article and Find Full Text PDFBiopharmaceuticals and their production are on the rise. They are needed to treat and to prevent multiple diseases. Therefore, an urgent need for process intensification in downstream processing (DSP) has been identified to produce biopharmaceuticals more efficiently.
View Article and Find Full Text PDFKidney disease is one of the main non-communicable diseases. Every year millions of people worldwide die from kidney dysfunction. One cause is disturbances in the mineral metabolism, such as abnormally high phosphate concentrations in the blood, medically referred to as hyperphosphatemia.
View Article and Find Full Text PDF