Optimization procedures for industrial spray drying processes mainly rely on empirical understanding. Mechanistic understanding of the process is limited, but can be enhanced by studying the drying of single droplets. We here report on a new sessile single droplet drying platform, using two air streams to represent the inlet and outlet air of a spray dryer to simulate changing conditions in a spray dryer.
View Article and Find Full Text PDF3D food printing can customize food appearance, textures, and flavors to tailor to specific consumer needs. Current 3D food printing depends on trial-and-error optimization and experienced printer operators, which limits the adoption of the technology by general consumers. Digital image analysis can be applied to monitor the 3D printing process, quantify printing errors, and guide optimization of the printing process.
View Article and Find Full Text PDFWith the rising problems of food shortages, energy costs, and raw materials, the food industry must reduce its environmental impact. We present an overview of more resource-efficient processes to produce food ingredients, describing their environmental impact and the functional properties obtained. Extensive wet processing yields high purities but also has the highest environmental impact, mainly due to heating for protein precipitation and dehydration.
View Article and Find Full Text PDFSplit-stream processing of asparagus waste stream is a novel approach to produce spray-dried powder and fibre. Asparagus ingredients processed by this method and a commercial asparagus powder were compared by evaluating their flavour profile in a soup formulation. Professional sensory panel and untargeted metabolomics approaches using GC-MS and LC-MS were carried out.
View Article and Find Full Text PDFThe efficient development of extrusion-based 3D-printing requires flexibility in both formulation- and process design. This task requires a fundamental understanding of the influence of material rheological properties on the extrusion process. Within this review, a qualitative toolbox for food extrusion is presented which provides guidelines for the formulation and engineering of extrusion processes in general and 3D-printing in particular.
View Article and Find Full Text PDFAsparagus concentrate was spray-dried in different carrier formulations in which maltodextrin was partially replaced by cellulose-based carriers, i.e. asparagus fibre, citrus fibre or microcrystalline cellulose.
View Article and Find Full Text PDFConsumers expect perceptual constancy between multiple bites of the same food. In this study, we investigated how sweetness, creaminess, expected fullness and liking of chocolate coated rice waffles can be modified by bite-to-bite variation in chocolate thickness. 3D inkjet printing was used to accurately deposit the chocolate layers varying in thickness (0.
View Article and Find Full Text PDFPulsed electric field (PEF) treatment can be used to increase intracellular small molecule concentrations in bacteria, which can lead to enhanced robustness of these cells during further processing. In this study we investigated the effects of the PEF treatment temperature and the presence of 8% (v/v) ethanol in the PEF medium on cell survival, membrane fluidity and intracellular trehalose concentrations of Lactobacillus plantarum WCFS1. A moderate PEF treatment temperature of 21 °C resulted in a high cell survival combined with higher intracellular trehalose concentrations compared to a treatment at 10 and 35 °C.
View Article and Find Full Text PDFParticle morphology development during spray drying is critical to powder properties. The aim of this study was to investigate whether the dextrose equivalence (DE) of maltodextrins can be used as an indicator for the final particle morphology. Maltodextrins were characterized on glass transition temperature (T) and viscosity, where low DE-value maltodextrins exhibited higher T and viscosity than high DE maltodextrins (≥21).
View Article and Find Full Text PDFPulsed electric field (PEF) treatment, or electroporation, can be used to load molecules into cells. The permeabilizing effect of the PEF treatment on the cellular membrane can be either reversible or irreversible depending on the severity of the PEF treatment conditions. The influence of PEF on the reversibility of membrane permeabilization in Lactobacillus plantarum WCFS1 by two different fluorescent staining methods was investigated in this study.
View Article and Find Full Text PDFDeterministic lateral displacement (DLD) systems structure suspension flow in so called flow lanes. The width of these flow lanes is crucial for separation of particles and determines whether particles with certain size are displaced or not. In previous research, separation was observed in simplified DLD systems that did not meet the established DLD geometric design criteria, by adjusting the outflow conditions.
View Article and Find Full Text PDFWe report on the influence of selected components and their mixtures on the development of the morphology during drying of single droplets and extend the results to the morphology of whole milk powder particles. Sessile single droplet drying and acoustic levitation methods were employed to study single droplet drying. The influence of carbohydrates (lactose and maltodextrin DE12) and proteins (micellar casein or whey protein) on morphology development is very different, since upon concentration protein systems will jam and undergo a colloidal glass transition, whereas carbohydrate systems will gradually increase in viscosity as a consequence of the concentration.
View Article and Find Full Text PDFDeterministic lateral displacement technology was originally developed in the realm of microfluidics, but has potential for larger scale separation as well. In our previous studies, we proposed a sieve-based lateral displacement device inspired on the principle of deterministic lateral displacement. The advantages of this new device is that it gives a lower pressure drop, lower risk of particle accumulation, higher throughput and is simpler to manufacture.
View Article and Find Full Text PDFQuinoa protein was isolated from quinoa seeds using wet fractionation that resulted in a protein isolate (QPI) with a high protein purity of 87.1% (w/dw) and a protein yield of around 54%, and a dry fractionation method delivered a quinoa protein concentrate (QPC) with a purity of 27.8% (w/dw) and yield of around 47%.
View Article and Find Full Text PDFIn this study, β-galactosidase was utilized as a model enzyme to investigate the mechanism of enzyme inactivation during bread baking. Thermal inactivation of β-galactosidase was investigated in a wheat flour/water system at varying temperature-moisture content combinations, and in bread during baking at 175 or 205°C. In the wheat flour/water system, the thermostability of β-galactosidase increased with decreased moisture content, and a kinetic model was accurately fitted to the corresponding inactivation data (R=0.
View Article and Find Full Text PDFJ Food Sci Technol
April 2016
Conventional industrial frying systems are not optimised towards homogeneous product quality, which is partly related to poor oil distribution across the packed bed of fries. In this study we investigate an alternative frying system with an oil cross-flow from bottom to top through a packed bed of fries. Fluidization of rectangular fries during frying was characterised with a modified Ergun equation.
View Article and Find Full Text PDFCrust formation is an important factor in determining the crispness of French fries. This study aimed at unravelling detailed structural and textural properties of the crust in relation to crispness during frying as a function of the process temperature and time. X-ray tomography showed a larger overall pore volume at higher frying times, while a lower final moisture content mainly resulted in an increase in the amount of large pores.
View Article and Find Full Text PDFSurvival of Lactobacillus plantarum WCFS1 spray-dried and stored under different conditions was investigated using complementary methods. One method involved a cell membrane integrity viability-based determination, the other assessed cell growth behavior in a liquid medium by means of detection time or by conventional plating. Survival decreased below 95% when spray drying was carried out at higher outlet spray drying temperatures (T>70°C).
View Article and Find Full Text PDFSurvival of probiotic bacteria during drying is not trivial. Survival percentages are very specific for each probiotic strain and can be improved by careful selection of drying conditions and proper drying carrier formulation. An experimental approach is presented, comprising a single-droplet drying method and a subsequent novel screening methodology, to assess the microbial viability within single particles.
View Article and Find Full Text PDFIn the framework of a cooperative EU research project (MILQ-QC-TOOL) a web-based modelling tool (Websim-MILQ) was developed for optimisation of thermal treatments in the dairy industry. The web-based tool enables optimisation of thermal treatments with respect to product safety, quality and costs. It can be applied to existing products and processes but also to reduce time to market for new products.
View Article and Find Full Text PDFThe development of mathematical models facilitates industrial (large-scale) application of solid-state fermentation (SSF). In this study, a two-phase model of a drum fermentor is developed that consists of a discrete particle model (solid phase) and a continuum model (gas phase). The continuum model describes the distribution of air in the bed injected via an aeration pipe.
View Article and Find Full Text PDFHelical-blade solids mixers have a large potential as bioreactors for solid-state fermentation (SSF). Fundamental knowledge of the flow and mixing behavior is required for robust operation of these mixers. In this study predictions of a discrete particle model were compared to experiments with colored wheat grain particles and positron emission particle tracking (PEPT) measurements.
View Article and Find Full Text PDFSolid-state fermentation (SSF) is prone to process failure due to channeling caused by evaporative cooling and the formation of an interparticle mycelium network. Mixing is needed to break the mycelium network and to avoid such failure. This study presents the first attempt to quantify and predict the effect of mycelium bonds on particle mixing and vice versa.
View Article and Find Full Text PDFWe report the progress of a multi-disciplinary research project on solid-state fermentation (SSF) of the filamentous fungus Aspergillus oryzae. The molecular and physiological aspects of the fungus in submerged fermentation (SmF) and SSF are compared and we observe a number of differences correlated with the different growth conditions. First, the aerial hyphae which occur only in SSFs are mainly responsible for oxygen uptake.
View Article and Find Full Text PDFIn previous work we reported on the simulation of mixing behavior of a slowly rotating drum for solid-state fermentation (SSF) using a discrete particle model. In this investigation the discrete particle model is extended with heat and moisture transfer. Heat transfer is implemented in the model via interparticle contacts and the interparticle heat transfer coefficient is determined experimentally.
View Article and Find Full Text PDF