Publications by authors named "Schuman B"

Smartphone sensors are used increasingly in the assessment of ataxias. To date, there is no specific consensus guidance regarding a priority set of smartphone sensor measurements, or standard assessment criteria that are appropriate for clinical trials. As part of the Ataxia Global Initiative Digital-Motor Biomarkers Working Group (AGI WG4), aimed at evaluating key ataxia clinical domains (gait/posture, upper limb, speech and oculomotor assessments), we provide consensus guidance for use of internal smartphone sensors to assess key domains.

View Article and Find Full Text PDF

Cortical GABAergic interneurons (INs) represent a diverse population of mainly locally projecting cells that provide specialized forms of inhibition to pyramidal neurons and other INs. Most recent work on INs has focused on subtypes distinguished by expression of Parvalbumin (PV), Somatostatin (SST), or Vasoactive Intestinal Peptide (VIP). However, a fourth group that includes neurogliaform cells (NGFCs) has been less well characterized due to a lack of genetic tools.

View Article and Find Full Text PDF

Neocortical layer 1 (L1) consists of the distal dendrites of pyramidal cells and GABAergic interneurons (INs) and receives extensive long-range "top-down" projections, but L1 INs remain poorly understood. In this work, we systematically examined the distinct dominant electrophysiological features for four unique IN subtypes in L1 that were previously identified from mice of either gender: Canopy cells show an irregular firing pattern near rheobase; neurogliaform cells are late-spiking, and their firing rate accelerates during current injections; cells with strong expression of the α7 nicotinic receptor (α7 cells), display onset (rebound) bursting; vasoactive intestinal peptide (VIP) expressing cells exhibit high input resistance, strong adaptation, and irregular firing. Computational modeling revealed that these diverse neurophysiological features could be explained by an extended exponential-integrate-and-fire neuron model with varying contributions of a slowly inactivating K channel, a T-type Ca channel, and a spike-triggered Ca-dependent K channel.

View Article and Find Full Text PDF

Many of our daily activities, such as riding a bike to work or reading a book in a noisy cafe, and highly skilled activities, such as a professional playing a tennis match or a violin concerto, depend upon the ability of the brain to quickly make moment-to-moment adjustments to our behavior in response to the results of our actions. Particularly, they depend upon the ability of the neocortex to integrate the information provided by the sensory organs (bottom-up information) with internally generated signals such as expectations or attentional signals (top-down information). This integration occurs in pyramidal cells (PCs) and their long apical dendrite, which branches extensively into a dendritic tuft in layer 1 (L1).

View Article and Find Full Text PDF

Pyramidal cells and GABAergic interneurons fire together in balanced cortical networks. In contrast to this general rule, we describe a distinct neuron type in mice and rats whose spiking activity is anti-correlated with all principal cells and interneurons in all brain states but, most prevalently, during the down state of non-REM (NREM) sleep. We identify these down state-active (DSA) neurons as deep-layer neocortical neurogliaform cells that express ID2 and Nkx2.

View Article and Find Full Text PDF
Article Synopsis
  • An amendment to the original paper has been published.
  • The amendment can be accessed through a link provided at the top of the paper.
  • Readers should check the link for the latest updates or changes to the content.
View Article and Find Full Text PDF
Article Synopsis
  • A study examined the RNA expression of almost 190,000 individual interneurons from three types of primates (human, macaque, and marmoset), a mouse, and a ferret to understand the cellular basis of behavioral and cognitive differences stemming from a common ancestor.
  • The findings revealed significant variations in interneuron types and gene expression between rodents and primates, while primates showed less diversity among themselves.
  • Notably, a specific interneuron subtype, the "ivy cell," was found to be abundant in primates but absent in rodents, along with a unique striatal interneuron type in primates featuring distinct gene expressions, suggesting evolutionary adaptations in brain structure and function.
View Article and Find Full Text PDF

Neocortical Layer 1 consists of a dense mesh of excitatory and inhibitory axons, dendrites of pyramidal neurons, as well as neuromodulatory inputs from diverse brain regions. Layer 1 also consists of a sparse population of inhibitory interneurons, which are appropriately positioned to receive and integrate the information from these regions of the brain and modulate cortical processing. Despite being among the sparsest neuronal population in the cortex, Layer 1 interneurons perform powerful computations and have elaborate morphologies.

View Article and Find Full Text PDF

In this issue of Neuron, Yu et al. (2019) reveal the activity of excitatory cells and GABAergic inhibitory interneurons throughout the neocortical column during active sensation. The authors utilized a combination of spike waveform analysis and genetic tools to identify cell types, demonstrating their distinct patterns of recruitment during behavior.

View Article and Find Full Text PDF

Parkinson's disease neurodegenerative brain tissue exhibits two biophysically distinct α-synuclein fiber isoforms-single stranded fibers that appear to be steric-zippers and double-stranded fibers with an undetermined structure. Herein, we describe a β-helical homology model of α-synuclein that exhibits stability in probabilistic and Monte Carlo simulations as a candidate for stable prional dimer conformers in equilibrium with double-stranded fibers and cytotoxic pore assemblies. Molecular models of β-helical pore assemblies are consistent with α-synuclein transfected rat immunofluorescence epitope maps.

View Article and Find Full Text PDF

Sensory perception depends on neocortical computations that contextually adjust sensory signals in different internal and environmental contexts. Neocortical layer 1 (L1) is the main target of cortical and subcortical inputs that provide "top-down" information for context-dependent sensory processing. Although L1 is devoid of excitatory cells, it contains the distal "tuft" dendrites of pyramidal cells (PCs) located in deeper layers.

View Article and Find Full Text PDF

Homologous glycosyltransferases GTA and GTB perform the final step in human ABO(H) blood group A and B antigen synthesis by transferring the sugar moiety from donor UDP-GalNAc/UDP-Gal to the terminal H antigen disaccharide acceptor. Like other GT-A fold family 6 glycosyltransferases, GTA and GTB undergo major conformational changes in two mobile regions, the C-terminal tail and internal loop, to achieve the closed, catalytic state. These changes are known to establish a salt bridge network among conserved active site residues Arg188, Asp211 and Asp302, which move to accommodate a series of discrete donor conformations while promoting loop ordering and formation of the closed enzyme state.

View Article and Find Full Text PDF

Aim: This study was conducted to evaluate the effect of continued follow-up by a hospital diabetes team on HbA1c at 1-year after discharge.

Methods: Adults with HbA1c ≥8% (64mmol/mol), undergoing an elective surgery, were treated in the perioperative period and randomized to continued care (CC) or the usual care (UC) after discharge. Patients in the CC group received weekly to monthly phone calls from a diabetes specialist nurse practitioner (NP) to review their home blood glucose values, diet, exercise, and medications.

View Article and Find Full Text PDF

The human ABO(H) blood group A- and B-synthesizing glycosyltransferases GTA and GTB have been structurally characterized to high resolution in complex with their respective trisaccharide antigen products. These findings are particularly timely and relevant given the dearth of glycosyltransferase structures collected in complex with their saccharide reaction products. GTA and GTB utilize the same acceptor substrates, oligosaccharides terminating with α-l-Fucp-(1→2)-β-d-Galp-OR (where R is a glycolipid or glycoprotein), but use distinct UDP donor sugars, UDP-N-acetylgalactosamine and UDP-galactose, to generate the blood group A (α-l-Fucp-(1→2)[α-d-GalNAcp-(1→3)]-β-d-Galp-OR) and blood group B (α-l-Fucp-(1→2)[α-d-Galp-(1→3)]-β-d-Galp-OR) determinant structures, respectively.

View Article and Find Full Text PDF

Objective: The aim of this study was to evaluate whether preoperative diabetes management can improve glycemic control and clinical outcomes after elective surgery.

Background: There is lack of data on the importance of diabetes treatment before elective surgery. Diabetes is often ignored before surgery and aggressively treated afterwards.

View Article and Find Full Text PDF

Objective: To evaluate whether saxagliptin is non-inferior to basal-bolus insulin therapy for glycemic control in patients with controlled type 2 diabetes mellitus (T2DM) admitted to hospital with non-critical illnesses.

Research Design And Methods: This was an open-label, randomized controlled clinical trial. Patients received either saxagliptin or basal-bolus insulin, both with correctional insulin doses.

View Article and Find Full Text PDF

The homologous glycosyltransferases α-1,3-N-acetylgalactosaminyltransferase (GTA) and α-1,3-galactosyltransferase (GTB) carry out the final synthetic step of the closely related human ABO(H) blood group A and B antigens. The catalytic mechanism of these model retaining enzymes remains under debate, where Glu303 has been suggested to act as a putative nucleophile in a double displacement mechanism, a local dipole stabilizing the intermediate in an orthogonal associative mechanism or a general base to stabilize the reactive oxocarbenium ion-like intermediate in an SNi-like mechanism. Kinetic analysis of GTA and GTB point mutants E303C, E303D, E303Q and E303A shows that despite the enzymes having nearly identical sequences, the corresponding mutants of GTA/GTB have up to a 13-fold difference in their residual activities relative to wild type.

View Article and Find Full Text PDF

Purpose: This study evaluated the effect of nurse practitioner (NP) mediated interventions on diabetes control before elective surgery.

Data Sources: A program was initiated to improve preoperative diabetes control in patients with HbA1c > 8%. The intervention was initially mediated by a physician alone and subsequently changed to involve NPs.

View Article and Find Full Text PDF

Biomonitoring is an excellent method for capturing the results of all exposures, regardless of route. Coke oven workers include certain groups that have the potential for high exposure to polycyclic aromatic hydrocarbons (PAH) and other materials. Biomarkers of exposure to these agents include PAH metabolites as markers of internal dose and carcinogen-DNA adducts as measure of effective dose.

View Article and Find Full Text PDF

The homologous human ABO(H) A and B blood group glycosyltransferases GTA and GTB have two mobile polypeptide loops surrounding their active sites that serve to allow substrate access and product egress and to recognize and sequester substrates for catalysis. Previous studies have established that these enzymes can move from the "open" state to the "semi-closed" then "closed" states in response to addition of a substrate. The contribution of electrostatic interactions to these conformational changes has now been demonstrated by the determination at various pH of the structures of GTA, GTB and the chimeric enzyme ABBA.

View Article and Find Full Text PDF

C. elegans body-wall muscle cells are electrically coupled through gap junctions. Previous studies suggest that UNC-9 is an important, but not the only, innexin mediating the electrical coupling.

View Article and Find Full Text PDF

Retaining glycosyltransferase enzymes retain the stereochemistry of the donor glycosidic linkage after transfer to an acceptor molecule. The mechanism these enzymes utilize to achieve retention of the anomeric stereochemistry has been a matter of much debate. Re-analysis of previously released structural data from retaining and inverting glycosyltransferases allows competing mechanistic proposals to be evaluated.

View Article and Find Full Text PDF

The human ABO(H) A and B blood group glycosyltransferases GTA and GTB differ by only four amino acids, yet this small dissimilarity is responsible for significant differences in biosynthesis, kinetics and structure. Like other glycosyltransferases, these two enzymes have been shown to recognize substrates through dramatic conformational changes in mobile polypeptide loops surrounding the active site. Structures of GTA, GTB and several chimeras determined by single-crystal X-ray diffraction demonstrate a range of susceptibility to the choice of cryoprotectant, in which the mobile polypeptide loops can be induced by glycerol to form the ordered closed conformation associated with substrate recognition and by MPD [hexylene glycol, (±)-2-methyl-2,4-pentanediol] to hinder binding of substrate in the active site owing to chelation of the Mn²⁺ cofactor and thereby adopt the disordered open state.

View Article and Find Full Text PDF

The biosyntheses of oligosaccharides and glycoconjugates are conducted by glycosyltransferases. These extraordinarily diverse and widespread enzymes catalyze the formation of glycosidic bonds through the transfer of a monosaccharide from a donor molecule to an acceptor molecule, with the stereochemistry about the anomeric carbon being either inverted or retained. Human ABO(H) blood group A α-1,3-N-acetylgalactosaminyltransferase (GTA) generates the corresponding antigen by the transfer of N-acetylgalactosamine from UDP-GalNAc to the blood group H antigen.

View Article and Find Full Text PDF

A common feature in the structures of GT-A-fold-type glycosyltransferases is a mobile polypeptide loop that has been observed to participate in substrate recognition and enclose the active site upon substrate binding. This is the case for the human ABO(H) blood group B glycosyltransferase GTB, where amino acid residues 177-195 display significantly higher levels of disorder in the unliganded state than in the fully liganded state. Structural studies of mutant enzymes GTB/C80S/C196S and GTB/C80S/C196S/C209S at resolutions ranging from 1.

View Article and Find Full Text PDF