The mitochondrial outer membrane harbors two protein translocases that are essential for cell viability: the translocase of the outer mitochondrial membrane (TOM) and the sorting and assembly machinery (SAM). The precursors of β-barrel proteins use both translocases-TOM for import to the intermembrane space and SAM for export into the outer membrane. It is unknown if the translocases cooperate and where the β-barrel of newly imported proteins is formed.
View Article and Find Full Text PDFThe intermembrane space of mitochondria accommodates the essential mitochondrial intermembrane space assembly (MIA) machinery that catalyzes oxidative folding of proteins. The disulfide bond formation pathway is based on a relay of reactions involving disulfide transfer from the sulfhydryl oxidase Erv1 to Mia40 and from Mia40 to substrate proteins. However, the substrates of the MIA typically contain two disulfide bonds.
View Article and Find Full Text PDFThe mitochondrial inner membrane harbors the complexes of the respiratory chain and translocase complexes for precursor proteins. We have identified a further subunit of the carrier translocase (TIM22 complex) that surprisingly is identical to subunit 3 of respiratory complex II, succinate dehydrogenase (Sdh3). The membrane-integral protein Sdh3 plays specific functions in electron transfer in complex II.
View Article and Find Full Text PDFThe intermembrane space of mitochondria contains the specific mitochondrial intermembrane space assembly (MIA) machinery that operates in the biogenesis pathway of precursor proteins destined to this compartment. The Mia40 component of the MIA pathway functions as a receptor and binds incoming precursors, forming an essential early intermediate in the biogenesis of intermembrane space proteins. The elements that are crucial for the association of the intermembrane space precursors with Mia40 have not been determined.
View Article and Find Full Text PDFThe biogenesis of mitochondrial intermembrane space proteins depends on specific machinery that transfers disulfide bonds to precursor proteins. The machinery shares features with protein relays for disulfide bond formation in the bacterial periplasm and endoplasmic reticulum. A disulfide-generating enzyme/sulfhydryl oxidase oxidizes a disulfide carrier protein, which in turn transfers a disulfide to the substrate protein.
View Article and Find Full Text PDFMitochondrial precursor proteins are directed into the intermembrane space via two different routes, the presequence pathway and the redox-dependent MIA pathway. The pathways were assumed to be independent and transport different proteins. We report that the intermembrane space receptor Mia40 can switch between both pathways.
View Article and Find Full Text PDFThe mitochondrial intermembrane space (IMS) contains an essential machinery for protein import and assembly (MIA). Biogenesis of IMS proteins involves a disulfide relay between precursor proteins, the cysteine-rich IMS protein Mia40 and the sulfhydryl oxidase Erv1. How precursor proteins are specifically directed to the IMS has remained unknown.
View Article and Find Full Text PDFMitochondria import nuclear-encoded precursor proteins to four different subcompartments. Specific import machineries have been identified that direct the precursor proteins to the mitochondrial outer membrane, inner membrane or matrix, respectively. However, a machinery dedicated to the import of mitochondrial intermembrane space (IMS) proteins has not been found so far.
View Article and Find Full Text PDFPreproteins with N-terminal presequences are imported into mitochondria at translocation contact sites that include the translocase of the outer membrane (TOM complex) and the presequence translocase of the inner membrane (TIM23 complex). Little is known about the functional cooperation of these translocases. We have characterized translocation contact sites by a productive TOM-TIM-preprotein supercomplex to address the role of three translocase subunits that expose domains to the intermembrane space (IMS).
View Article and Find Full Text PDFRibosome-associated Trigger Factor (TF) and the DnaK chaperone system assist the folding of newly synthesized proteins in Escherichia coli. Here, we show that DnaK and TF share a common substrate pool in vivo. In TF-deficient cells, deltatig, depleted for DnaK and DnaJ the amount of aggregated proteins increases with increasing temperature, amounting to 10% of total soluble protein (approximately 340 protein species) at 37 degrees C.
View Article and Find Full Text PDFDuring translation, the first encounter of nascent polypeptides is with the ribosome-associated chaperones that assist the folding process--a principle that seems to be conserved in evolution. In Escherichia coli, the ribosome-bound Trigger Factor chaperones the folding of cytosolic proteins by interacting with nascent polypeptides. Here we identify a ribosome-binding motif in the amino-terminal domain of Trigger Factor.
View Article and Find Full Text PDFThe role of molecular chaperones in assisting the folding of newly synthesized proteins in the cytosol is poorly understood. In Escherichia coli, GroEL assists folding of only a minority of proteins and the Hsp70 homologue DnaK is not essential for protein folding or cell viability at intermediate growth temperatures. The major protein associated with nascent polypeptides is ribosome-bound trigger factor, which displays chaperone and prolyl isomerase activities in vitro.
View Article and Find Full Text PDFExpression of heat shock genes is controlled in Escherichia coli by the antagonistic action of the sigma32 subunit of RNA polymerase and the DnaK chaperone system, which inactivates sigma32 by stress-dependent association and mediates sigma32 degradation by the FtsH protease. A stretch of 23 residues (R122 to Q144) conserved among sigma32 homologs, termed region C, was proposed to play a role in sigma32 degradation, and peptide analysis identified two potential DnaK binding sites central and peripheral to region C. Region C is thus a prime candidate for mediating stress control of sigma32, a hypothesis that we tested in the present study.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 1994
Nitric oxide (NO) production by cells of the regenerating liver was estimated from the amount of nitrite accumulated during 24 h in the culture media of hepatocytes, Kupffer cells and sinusoidal endothelial cells isolated at different times after partial hepatectomy (PHE). The time course of NO production was compared with the course of the proliferating activity of the same cells. During the time when liver cells pass through their first cell cycles, hepatocytes were the main producers of NO in the liver.
View Article and Find Full Text PDFInterleukin-6 has a variety of biological effects, mainly on the immune system. The regulation of this signal at both the site of production and the site of action is necessary to maintain the organism's homeostasis. In the microenvironment of the hepatic sinusoids, Kupffer cells as resident macrophages are the most potent source of interleukin-6 during inflammation.
View Article and Find Full Text PDFStimulated liver macrophages (Kupffer cells) are known to release a variety of inflammation-related substances, e.g. cytokines, prostanoids, and reactive oxygen intermediates.
View Article and Find Full Text PDFThe kinetics of the production and release of tumor necrosis factor-alpha (TNF-alpha), interleukin-1 (IL-1) and interleukin-6 (IL-6) were investigated in the perfused rat liver and in primary cultures of Kupffer cells after stimulation with lipopolysaccharide (LPS). A small and transient accumulation of TNF-alpha could be detected immunohistochemically and by cytotoxicity assay in the intracellular space about 1 h after addition of LPS to the cultured cells. TNF-alpha release in the perfused liver followed similar kinetics as those found in the serum of LPS-treated rats and in primary cultures of rat Kupffer cells.
View Article and Find Full Text PDFA novel and reliable high-performance liquid chromatography (HPLC) method is described for the purification and quantification of double-stranded DNA. The nucleic acids may be obtained by polymerase chain reaction (PCR) or as restriction fragments from enzymatic cleavage; the separated products are devoid of contaminating material like agarose, ethidium bromide or non-specific DNA sequences. Because of the non-destructive nature of this HPLC procedure, the purified DNA is optimally suited for cloning experiments.
View Article and Find Full Text PDFProstaglandin-synthesizing activities were demonstrated in cell-free extracts of rat Kupffer cells and characterized. The enzymatic properties of PGH2 synthase were found to be similar to those of synthases present in other organs or cell types. The specific activity of the enzyme was not changed by substances that stimulate prostanoid release by intact Kupffer cells; however, it was reduced by pretreatment of the cells with glucocorticoid hormones.
View Article and Find Full Text PDFZymosan and phorbol ester induced in liver macrophages the release of arachidonic acid, prostaglandin E2, and superoxide; the calcium ionophore A 23187 elicited a release of arachidonic acid and prostaglandin E2 but not of superoxide, and exogenously added arachidonic acid led to the formation of prostaglandin E2 only. The zymosan- and phorbol-ester-induced release of arachidonic acid, prostaglandin E2, and superoxide was dose-dependently inhibited by staurosporine and K252a, two inhibitors of protein kinase C, and by pretreatment of the cells with phorbol ester which desensitized protein kinase C. The release of arachidonic acid or prostaglandin E2 following the addition of A 23187 or arachidonic acid was not affected by these treatments.
View Article and Find Full Text PDFEndotoxin is a well established elicitor of cytokine production in mononuclear cells. Nevertheless, the path of signal transduction between the crucial contact of the cells with endotoxin (lipopolysaccharide) and the synthesis and release of the mediators is yet poorly understood. In particular, the involvement of Ca2+ and protein kinase C in this process is still a matter of controversy.
View Article and Find Full Text PDFIn cell-free extracts of rat liver macrophages (Kupffer cells) phospholipase A2 was found to be rapidly associated with the particulate fraction in a Ca(2+)-dependent manner at Ca2+ concentrations of 0.1-1.0 microM.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 1991
In cell-free extracts of rat liver macrophages (Kupffer cells) phospholipase A2 was found to be strongly activated at free Ca2+ concentrations from 100 nM to 1 microM in the presence of 4 mM free Mg2+. This is within the range of intracellular free Ca2+ reported for basal and various stimulated conditions, respectively. Ca2+ alone increased phospholipase A2 activity at high Ca2+ concentrations (1 mM) whereas Mg2+ alone had only little stimulatory effect.
View Article and Find Full Text PDFBiol Chem Hoppe Seyler
March 1991
Rat liver macrophages (Kupffer cells) secrete tumor necrosis factor-alpha (cachectin) after exposure to Newcastle disease virus or bacterial endotoxin. Macrophages treated with endotoxin become refractory and fail to release tumor necrosis factor-alpha to a secondary challenge with endotoxin. The acquisition of the refractory state is dose-dependent, requires the continuous presence of endotoxin for a minimum of 8 h, is transient, and reversible.
View Article and Find Full Text PDF