Publications by authors named "Schulz V"

Mammalian red blood cells are generated via a terminal erythroid differentiation pathway culminating in cell polarization and enucleation. Actin filament polymerization is critical for enucleation, but the molecular regulatory mechanisms remain poorly understood. We utilized publicly available RNA-seq and proteomics datasets to mine for actin-binding proteins and actin- nucleation factors differentially expressed during human erythroid differentiation and discovered that a focal adhesion protein-Tensin-1-dramatically increases in expression late in differentiation.

View Article and Find Full Text PDF

Time resolution is crucial in positron emission tomography (PET) to enhance the signal-to-noise ratio and image quality. Moreover, high sensitivity requires long scintillators, which can cause distortions in the reconstructed images due to parallax effects. This study evaluates the performance of a time-of-flight (TOF)-PET module that makes use of a single-side readout of a 4x4 3.

View Article and Find Full Text PDF

To achieve precise control over the properties and performance of nanoparticles (NPs) in a microfluidic setting, a profound understanding of the influential parameters governing the NP size is crucial. This study specifically delves into poly(lactic--glycolic acid) (PLGA)-based NPs synthesized through microfluidics that have been extensively explored as drug delivery systems (DDS). A comprehensive database, containing more than 11 hundred data points, is curated through an extensive literature review, identifying potential effective features.

View Article and Find Full Text PDF

Iron-sulfur (FeS) protein biogenesis in eukaryotes begins with the de novo assembly of [2Fe-2S] clusters by the mitochondrial core iron-sulfur cluster assembly (ISC) complex. This complex comprises the scaffold protein ISCU2, the cysteine desulfurase subcomplex NFS1-ISD11-ACP1, the allosteric activator frataxin (FXN) and the electron donor ferredoxin-2 (FDX2). The structural interaction of FDX2 with the complex remains unclear.

View Article and Find Full Text PDF

Background: Light-sharing detector designs for positron emission tomography (PET) systems have sparked interest in the scientific community. Particularly, (semi-)monoliths show generally good performance characteristics regarding 2D positioning, energy-, and timing resolution, as well as readout area. This is combined with intrinsic depth-of-interaction (DOI) capability to ensure a homogeneous spatial resolution across the entire field of view (FoV).

View Article and Find Full Text PDF

is able to survive exposure to high concentrations of transition metals, but is also able to grow under metal starvation conditions. A prerequisite of cellular zinc homeostasis is a flow equilibrium combining zinc uptake and efflux processes. The mutant strain ∆e4 of the parental plasmid-free strain AE104 with a deletion of all four chromosomally encoded genes of previously known efflux systems ZntA, CadA, DmeF, and FieF was still able to efflux zinc in a pulse-chase experiment, indicating the existence of a fifth efflux system.

View Article and Find Full Text PDF

In preclinical research, in vivo imaging of mice and rats is more common than any other animal species, since their physiopathology is very well- known and many genetically altered disease models exist. Animal studies based on small rodents are usually performed using dedicated preclinical imaging systems with high spatial resolution. For studies that require animal models such as mini- pigs or New-Zealand White (NZW) rabbits, imaging systems with larger bore sizes are required.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding pathogen diversity is essential for controlling emerging infectious diseases, as different variants interact uniquely with hosts and the environment.
  • This study focuses on Batrachochytrium salamandrivorans (Bsal), a fungal pathogen harming European amphibians, by analyzing 13 isolates to examine their reproductive rates and thermal tolerances.
  • The research suggests that the combination of host body temperature and the thermal range of Bsal can significantly affect pathogen growth, highlighting the importance of identifying pathogen variants to assess risk to host populations.
View Article and Find Full Text PDF

Inherited platelet disorders (IPDs) are a heterogeneous group of conditions that present significant challenges in diagnosis and management. Here, we report two cases of patients presenting with clinically significant bleeding but with unclear etiologies by conventional clinical laboratory testing. Further evaluation, utilizing a combination of high-dimensional multiplexed mass cytometry and genetic sequencing, revealed the underlying causes of bleeding in both cases, leading to definitive diagnoses.

View Article and Find Full Text PDF

Background US is clinically established for breast imaging, but its diagnostic performance depends on operator experience. Computer-assisted (real-time) image analysis may help in overcoming this limitation. Purpose To develop precise real-time-capable US-based breast tumor categorization by combining classic radiomics and autoencoder-based features from automatically localized lesions.

View Article and Find Full Text PDF

Superparamagnetic iron oxide nanoparticles (SPIONs) are widely used for biomedical applications, including magnetic particle imaging (MPI) and magnetic hyperthermia. The co-precipitation method is one of the most common synthetic routes to obtain SPIONs, since it is simple and does not require extreme conditions, such as high temperatures. Despite its prevalence, however, the co-precipitation synthesis presents some challenges, most notably the high batch-to-batch variability, as multiple factors can influence nanoparticle growth.

View Article and Find Full Text PDF

Foundational models, pretrained on a large scale, have demonstrated substantial success across non-medical domains. However, training these models typically requires large, comprehensive datasets, which contrasts with the smaller and more specialized datasets common in biomedical imaging. Here we propose a multi-task learning strategy that decouples the number of training tasks from memory requirements.

View Article and Find Full Text PDF

Modern PET scanners offer precise TOF information, improving the SNR of the reconstructed images. Timing calibrations are performed to reduce the worsening effects of the system components and provide valuable TOF information. Traditional calibration procedures often provide static or linear corrections, with the drawback that higher-order skews or event-to-event corrections are not addressed.

View Article and Find Full Text PDF

Background: Good timing resolution in medical imaging applications such as TOF-CT or TOF-PET can boost image quality or patient comfort significantly by reducing the influence of background noise. However, the timing resolution of state-of-the-art detectors in CT and PET are limited by their light emission process. Core-valence cross-luminescence is an alternative, but well-known compounds (e.

View Article and Find Full Text PDF

Biohybrid tissue-engineered vascular grafts (TEVGs) promise long-term durability due to their ability to adapt to hosts' needs. However, the latter calls for sensitive non-invasive imaging approaches to longitudinally monitor their functionality, integrity, and positioning. Here, we present an imaging approach comprising the labeling of non-degradable and degradable TEVGs' components for their in vitro and in vivo monitoring by hybrid H/F MRI.

View Article and Find Full Text PDF

Maturation of iron-sulfur proteins in eukaryotes is initiated in mitochondria by the core iron-sulfur cluster assembly (ISC) complex, consisting of the cysteine desulfurase sub-complex NFS1-ISD11-ACP1, the scaffold protein ISCU2, the electron donor ferredoxin FDX2, and frataxin, a protein dysfunctional in Friedreich's ataxia. The core ISC complex synthesizes [2Fe-2S] clusters de novo from Fe and a persulfide (SSH) bound at conserved cluster assembly site residues. Here, we elucidate the poorly understood Fe-dependent mechanism of persulfide transfer from cysteine desulfurase NFS1 to ISCU2.

View Article and Find Full Text PDF

Objectives: Chronic liver diseases (CLDs) have diverse etiologies. To better classify CLDs, we explored the ability of longitudinal multiparametric MRI (magnetic resonance imaging) in depicting alterations in liver morphology, inflammation, and hepatocyte and macrophage activity in murine high-fat diet (HFD)- and carbon tetrachloride (CCl 4 )-induced CLD models.

Materials And Methods: Mice were either untreated, fed an HFD for 24 weeks, or injected with CCl 4 for 8 weeks.

View Article and Find Full Text PDF

The clinical prospects of cancer nanomedicines depend on effective patient stratification. Here we report the identification of predictive biomarkers of the accumulation of nanomedicines in tumour tissue. By using supervised machine learning on data of the accumulation of nanomedicines in tumour models in mice, we identified the densities of blood vessels and of tumour-associated macrophages as key predictive features.

View Article and Find Full Text PDF

The limited proliferative capacity of erythroid precursors is a major obstacle to generate sufficient numbers of in vitro-derived red blood cells (RBC) for clinical purposes. We and others have determined that BMI1, a member of the polycomb repressive complex 1 (PRC1), is both necessary and sufficient to drive extensive proliferation of self-renewing erythroblasts (SREs). However, the mechanisms of BMI1 action remain poorly understood.

View Article and Find Full Text PDF

In and other bacteria, biosynthesis of the essential biochemical cofactor tetrahydrofolate (THF) initiates from guanosine triphosphate (GTP). This step is catalyzed by FolE_I-type GTP cyclohydrolases, which are either zinc-dependent FolE_IA-type or metal-promiscuous FolE_IB-type enzymes. As THF is also essential for GTP biosynthesis, GTP and THF synthesis form a cooperative cycle, which may be influenced by the cellular homeostasis of zinc and other metal cations.

View Article and Find Full Text PDF

Background: Preclinical research and organ-dedicated applications use and require high (spatial-)resolution positron emission tomography (PET) detectors to visualize small structures (early) and understand biological processes at a finer level of detail. Researchers seeking to improve detector and image spatial resolution have explored various detector designs. Current commercial high-resolution systems often employ finely pixelated or monolithic scintillators, each with its limitations.

View Article and Find Full Text PDF

Homeopathy is the subject of frequent debates, especially in public media. This systematic review aims to give an overview of conceptual criticisms of homeopathy in the scientific literature. The literature search was conducted in four databases (EMBASE, PubMed, Web of Science, PhilPapers) on August 25, 2020.

View Article and Find Full Text PDF

Background: Over the past five years, ultrafast high-frequency (HF) readout concepts have advanced the timing performance of silicon photomultipliers (SiPMs). The shown impact in time-of-flight (TOF) techniques can further push the limits in light detection and ranging (LiDAR), time-of-flight positron-emission tomography (TOF-PET), time-of-flight computed tomography (TOF-CT) or high-energy physics (HEP). However, upscaling these electronics to a system-applicable, multi-channel readout, has remained a challenging task, posed by the use of discrete components and a high power consumption.

View Article and Find Full Text PDF

Prompt-gamma imaging encompasses several approaches to the online monitoring of the beam range or deposited dose distribution in proton therapy. We test one of the imaging techniques - a coded mask approach - both experimentally and via simulations.Two imaging setups have been investigated experimentally.

View Article and Find Full Text PDF

Artificial intelligence (AI) is entering medical imaging, mainly enhancing image reconstruction. Nevertheless, improvements throughout the entire processing, from signal detection to computation, potentially offer significant benefits. This work presents a novel and versatile approach to detector optimization using machine learning (ML) and residual physics.

View Article and Find Full Text PDF