Regulated exocytosis is initiated by increased Ca2+ concentrations in close spatial proximity to secretory granules, which is effectively prevented when the cell is at rest. Here we showed that exocytosis of zymogen granules in acinar cells was driven by Ca2+ directly released from acidic Ca2+ stores including secretory granules through NAADP-activated two-pore channels (TPCs). We identified OCaR1 (encoded by Tmem63a) as an organellar Ca2+ regulator protein integral to the membrane of secretory granules that controlled Ca2+ release via inhibition of TPC1 and TPC2 currents.
View Article and Find Full Text PDFControl of protein stoichiometry is essential for cell function. Mitochondrial oxidative phosphorylation (OXPHOS) presents a complex stoichiometric challenge as the ratio of the electron transport chain (ETC) and ATP synthase must be tightly controlled, and assembly requires coordinated integration of proteins encoded in the nuclear and mitochondrial genome. How correct OXPHOS stoichiometry is achieved is unknown.
View Article and Find Full Text PDFThe mitochondrial inner membrane plays central roles in bioenergetics and metabolism and contains several established membrane protein complexes. Here, we report the identification of a mega-complex of the inner membrane, termed mitochondrial multifunctional assembly (MIMAS). Its large size of 3 MDa explains why MIMAS has escaped detection in the analysis of mitochondria so far.
View Article and Find Full Text PDFThe majority of mitochondrial precursor proteins are imported through the Tom40 β-barrel channel of the translocase of the outer membrane (TOM). The sorting and assembly machinery (SAM) is essential for β-barrel membrane protein insertion into the outer membrane and thus required for the assembly of the TOM complex. Here, we demonstrate that the α-helical outer membrane protein Mco6 co-assembles with the mitochondrial distribution and morphology protein Mdm10 as part of the SAM machinery.
View Article and Find Full Text PDFMitochondria perform crucial functions in cellular metabolism, protein and lipid biogenesis, quality control, and signaling. The systematic analysis of protein complexes and interaction networks provided exciting insights into the structural and functional organization of mitochondria. Most mitochondrial proteins do not act as independent units, but are interconnected by stable or dynamic protein-protein interactions.
View Article and Find Full Text PDFBasigin is an essential host receptor for invasion of into human erythrocytes, interacting with parasite surface protein PfRH5. PfRH5 is a leading blood-stage malaria vaccine candidate and a target of growth-inhibitory antibodies. Here, we show that erythrocyte basigin is exclusively found in one of two macromolecular complexes, bound either to plasma membrane Ca-ATPase 1/4 (PMCA1/4) or to monocarboxylate transporter 1 (MCT1).
View Article and Find Full Text PDFInformation processing and storage in the brain rely on AMPA-receptors (AMPARs) and their context-dependent dynamics in synapses and extra-synaptic sites. We found that distribution and dynamics of AMPARs in the plasma membrane are controlled by Noelins, a three-member family of conserved secreted proteins expressed throughout the brain in a cell-type-specific manner. Noelin tetramers tightly assemble with the extracellular domains of AMPARs and interconnect them in a network-like configuration with a variety of secreted and membrane-anchored proteins including Neurexin1, Neuritin1, and Seizure 6-like.
View Article and Find Full Text PDFCalcineurin B homologous protein 3 (CHP3) is an EF-hand Ca-binding protein involved in regulation of cancerogenesis, cardiac hypertrophy, and neuronal development through interactions with sodium/proton exchangers (NHEs) and signalling proteins. While the importance of Ca binding and myristoylation for CHP3 function has been recognized, the underlying molecular mechanism remained elusive. In this study, we demonstrate that Ca binding and myristoylation independently affect the conformation and functions of human CHP3.
View Article and Find Full Text PDFMitochondria have crucial roles in cellular energetics, metabolism, signalling and quality control. They contain around 1,000 different proteins that often assemble into complexes and supercomplexes such as respiratory complexes and preprotein translocases. The composition of the mitochondrial proteome has been characterized; however, the organization of mitochondrial proteins into stable and dynamic assemblies is poorly understood for major parts of the proteome.
View Article and Find Full Text PDFThe filtration of blood in the kidney which is crucial for mammalian life is determined by the slit-diaphragm, a cell-cell junction between the foot processes of renal podocytes. The slit-diaphragm is thought to operate as final barrier or as molecular sensor of renal filtration. Using high-resolution proteomic analysis of slit-diaphragms affinity-isolated from rodent kidney, we show that the native slit-diaphragm is built from the junction-forming components Nephrin, Neph1 and Podocin and a co-assembled high-molecular weight network of proteins.
View Article and Find Full Text PDFIn the mammalian brain TRPC channels, a family of Ca-permeable cation channels, are involved in a variety of processes from neuronal growth and synapse formation to transmitter release, synaptic transmission and plasticity. The molecular appearance and operation of native TRPC channels, however, remained poorly understood. Here, we used high-resolution proteomics to show that TRPC channels in the rodent brain are macro-molecular complexes of more than 1 MDa in size that result from the co-assembly of the tetrameric channel core with an ensemble of interacting proteins (interactome).
View Article and Find Full Text PDFObjectives: To evaluate post-treatment movements of lower anterior teeth during orthodontic retention in patients with fixed twistflex retainers versus those with combined fixed and removable retainers.
Materials And Methods: This study was based on a retrospective data analysis of 57 adult patients during orthodontic retention. They were assigned to two groups: In group 1 (n = 30) the lower jaw was provided with twistflex retainers only and in group 2 (n = 27) with a twistflex combined with a removable retainer for night-time use.
The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed membrane protein consisting of ion channel and protein kinase domains. TRPM7 plays a fundamental role in the cellular uptake of divalent cations such as Zn, Mg, and Ca, and thus shapes cellular excitability, plasticity, and metabolic activity. The molecular appearance and operation of TRPM7 channels in native tissues have remained unresolved.
View Article and Find Full Text PDFThe Mediterranean Basin has experienced extensive change in geology and climate over the past six million years. Yet, the relative importance of key geological events for the distribution and genetic structure of the Mediterranean fauna remains poorly understood. Here, we use population genomic and phylogenomic analyses to establish the evolutionary history and genetic structure of common wall lizards (Podarcis muralis).
View Article and Find Full Text PDFMegalencephalic Leukoencephalopathy with subcortical Cysts (MLC) is a type of vacuolating leukodystrophy, which is mainly caused by mutations in MLC1 or GLIALCAM. The two MLC-causing genes encode for membrane proteins of yet unknown function that have been linked to the regulation of different chloride channels such as the ClC-2 and VRAC. To gain insight into the role of MLC proteins, we have determined the brain GlialCAM interacting proteome.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
July 2021
Complexome profiling is an emerging 'omics' approach that systematically interrogates the composition of protein complexes (the complexome) of a sample, by combining biochemical separation of native protein complexes with mass-spectrometry based quantitation proteomics. The resulting fractionation profiles hold comprehensive information on the abundance and composition of the complexome, and have a high potential for reuse by experimental and computational researchers. However, the lack of a central resource that provides access to these data, reported with adequate descriptions and an analysis tool, has limited their reuse.
View Article and Find Full Text PDFThe transport of auxin controls the rate, direction and localization of plant growth and development. The course of auxin transport is defined by the polar subcellular localization of the PIN proteins, a family of auxin efflux transporters. However, little is known about the composition and regulation of the PIN protein complex.
View Article and Find Full Text PDFIn the crenarchaeon , the archaellum, a type-IV pilus like motility structure, is synthesized in response to nutrient starvation. Synthesis of components of the archaellum is controlled by the archaellum regulatory network (arn). Protein phosphorylation plays an important role in this regulatory network since the deletion of several genes encoding protein kinases and the phosphatase PP2A affected cell motility.
View Article and Find Full Text PDFProteins generally exert biological functions through interactions with other proteins, either in dynamic protein assemblies or as a part of stably formed complexes. The latter can be elegantly resolved according to molecular size using native polyacrylamide gel electrophoresis (BN-PAGE). Coupling of such separations to sensitive mass spectrometry (BN-MS) has been well-established and theoretically allows for exhaustive assessment of the extractable complexome in biological samples.
View Article and Find Full Text PDFExcitatory neurotransmission and its activity-dependent plasticity are largely determined by AMPA-receptors (AMPARs), ion channel complexes whose cell physiology is encoded by their interactome. Here, we delineate the assembly of AMPARs in the endoplasmic reticulum (ER) of native neurons as multi-state production line controlled by distinct interactome constituents: ABHD6 together with porcupine stabilizes pore-forming GluA monomers, and the intellectual-disability-related FRRS1l-CPT1c complexes promote GluA oligomerization and co-assembly of GluA tetramers with cornichon and transmembrane AMPA-regulatory proteins (TARP) to render receptor channels ready for ER exit. Disruption of the assembly line by FRRS1l deletion largely reduces AMPARs in the plasma membrane, impairs synapse formation, and abolishes activity-dependent synaptic plasticity, while FRRS1l overexpression has the opposite effect.
View Article and Find Full Text PDFHuman cytomegalovirus (HCMV) is a major human pathogen with seropositivity rates in the adult population ranging between 40% and 95%. HCMV infection is associated with severe pathology, such as life-threatening courses of infection in immunocompromised individuals and neonates. Current standard therapy with valganciclovir has the disadvantage of adverse side effects and viral drug resistance.
View Article and Find Full Text PDFPlasma membrane Ca-ATPases (PMCAs), a family of P-type ATPases, extrude Ca ions from the cytosol to the extracellular space and are considered to be key regulators of Ca signaling. Here we show by functional proteomics that native PMCAs are heteromeric complexes that are assembled from two pore-forming PMCA1-4 subunits and two of the single-span membrane proteins, either neuroplastin or basigin. Contribution of the two Ig domain-containing proteins varies among different types of cells and along postnatal development.
View Article and Find Full Text PDFTwo-pore channels (TPCs) are localized in endo-lysosomal compartments and assumed to play an important role for vesicular fusion and endosomal trafficking. Recently, it has been shown that both TPC1 and 2 were required for host cell entry and pathogenicity of Ebola viruses. Here, we investigate the cellular function of TPC1 using protein toxins as model substrates for distinct endosomal processing routes.
View Article and Find Full Text PDF