Publications by authors named "Schuemann J"

Radionuclides used for imaging and therapy can show high molecular specificity in the body with appropriate targeting ligands. We hypothesized that local energy delivered by molecularly targeted radionuclides could chemically activate prodrugs at disease sites while avoiding activation in off-target sites of toxicity. As proof of principle, we tested whether this strategy of radionuclide-induced drug engagement for release (RAiDER) could locally deliver combined radiation and chemotherapy to maximize tumor cytotoxicity while minimizing off-target exposure to activated chemotherapy.

View Article and Find Full Text PDF

TOPAS-nBio enables users to simulate dose rate-dependent radiation chemical yields in water radiolysis accounting for inter-track and long-term chemistry for pulsed irradiation. This study aims to extend the TOPAS-nBio chemistry for the special case of continuous high-dose rate scenario, where both intertrack and longer time reactions need to be considered, and to quantitatively validate the extended framework by comparing the results with experimental data.The inter-track chemistry and escape-values were first evaluated by the independent reaction time method.

View Article and Find Full Text PDF

Background And Purpose: Proton arc therapy and FLASH radiotherapy (FLASH-RT) each offer unique advantages in proton therapy. However, clinical translation of FLASH-RT faces challenges in defining and delivering high dose rates. We propose the use of proton FLASH-arc therapy (PFAT) to leverage the benefits of arc while addressing FLASH delivery concerns by spatially fractionating dose delivery to healthy tissue.

View Article and Find Full Text PDF
Article Synopsis
  • Computational models of tumor growth, especially agent-based models (ABMs), help simulate cancer progression and treatment responses, but often lack realism due to limited domains and missing factors like blood vessels.
  • AMBER (Agent-based fraMework for radioBiological Effects in Radiotherapy) overcomes these shortcomings by using a voxelized geometry for realistic simulations, integrating microenvironmental factors and combining ABM techniques with advanced radiation dose calculations from the Monte Carlo method.
  • The results from AMBER provide accurate predictions of tumor evolution and radiation outcomes, making it a valuable tool for studying tumor growth and treatment responses with the potential for future enhancements.
View Article and Find Full Text PDF

To present and validate a method to simulate from first principles the effect of oxygen on radiation-induced double-strand breaks (DSBs) using the Monte Carlo Track-structure code TOPAS-nBio.Two chemical models based on the oxygen fixation hypothesis (OFH) were developed in TOPAS-nBio by considering an oxygen adduct state of DNA and creating a competition kinetic mechanism between oxygen and the radioprotective molecule WR-1065. We named these models 'simple' and 'detailed' due to the way they handle the hydrogen abstraction pathways.

View Article and Find Full Text PDF

Unlabelled: Radionuclides used for imaging and therapy can show high molecular specificity in the body with appropriate targeting ligands. We hypothesized that local energy delivered by molecularly targeted radionuclides could chemically activate prodrugs at disease sites while avoiding activation in off-target sites of toxicity. As proof-of-principle, we tested whether this strategy of " dionuclide nduced rug ngagement for elease" ( ) could locally deliver combined radiation and chemotherapy to maximize tumor cytotoxicity while minimizing exposure to activated chemotherapy in off-target sites.

View Article and Find Full Text PDF

Purpose: In radiotherapy (RT) for brain tumors, patient heterogeneity masks treatment effects, complicating the prediction and mitigation of radiation-induced brain necrosis. Therefore, understanding this heterogeneity is essential for improving outcome assessments and reducing toxicity.

Experimental Design: We developed a clinically practical pipeline to clarify the relationship between dosimetric features and outcomes by identifying key variables.

View Article and Find Full Text PDF

Radiotherapy is commonly used to treat cancer, and localized energy deposited by radiotherapy has the potential to chemically uncage prodrugs; however, it has been challenging to demonstrate prodrug activation that is both sustained and truly localized to tumors without affecting off-target tissues. To address this, we developed a series of novel phenyl-azide-caged, radiation-activated chemotherapy drug-conjugates alongside a computational framework for understanding corresponding pharmacokinetic and pharmacodynamic (PK/PD) behaviors. We especially focused on an albumin-bound prodrug of monomethyl auristatin E (MMAE) and found it blocked tumor growth in mice, delivered a 130-fold greater amount of activated drug to irradiated tumor versus unirradiated tissue, was 7.

View Article and Find Full Text PDF

To investigate different dosimetric aspects ofY-IsoPet™ intratumoral therapy in canine soft tissue sarcomas, model the spatial spread of the gel post-injection, evaluate absorbed dose to clinical target volumes, and assess dose distributions and treatment efficacy.Six canine cases treated withY-IsoPet™ for soft tissue sarcoma at the Veterinary Health Center, University of Missouri are analyzed in this retrospective study. The dogs received intratumoral IsoPet™ injections, following a grid pattern to achieve a near-uniform dose distribution in the clinical target volume.

View Article and Find Full Text PDF

. To allow the estimation of secondary cancer risks from radiation therapy treatment plans in a comprehensive and user-friendly Monte Carlo (MC) framework..

View Article and Find Full Text PDF

To present a new set of lithium-ion cross-sections for (i) ionization and excitation processes down to 700 eV, and (ii) charge-exchange processes down to 1 keV u. To evaluate the impact of the use of these cross-sections on micro a nano dosimetric quantities in the context of boron neutron capture (BNC) applications/techniques.The Classical Trajectory Monte Carlo method was used to calculate Li ion charge-exchange cross sections in the energy range of 1 keV uto 10 MeV u.

View Article and Find Full Text PDF

Numerous dose rate effects have been described over the past 6-7 decades in the radiation biology and radiation oncology literature depending on the dose rate range being discussed. This review focuses on the impact and understanding of altering dose rates in the context of radiation therapy, but does not discuss dose rate effects as relevant to radiation protection. The review starts with a short historic review of early studies on dose rate effects, considers mechanisms thought to underlie dose rate dependencies, then discusses some current issues in clinical findings with altered dose rates, the importance of dose rate in brachytherapy, and the current timely topic of the use of very high dose rates, so-called FLASH radiotherapy.

View Article and Find Full Text PDF

. We provide optimal particle split numbers for speeding up TOPAS Monte Carlo simulations of linear accelerator (linac) treatment heads while maintaining accuracy. In addition, we provide a new TOPAS physics module for simulating photoneutron production and transport.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on improving cancer treatment by combining X-ray radiation therapy (XRT) with a new type of nanoparticle that releases drugs specifically in tumor tissues when activated by radiation, aiming to enhance treatment efficacy while reducing side effects.
  • The proposed method uses scintillating nanoparticles to create localized "drug depots" in tumors, allowing for the targeted release of a cancer-killing drug called MMAE upon exposure to XRT.
  • Testing in mouse models showed that this approach not only effectively released the drug but also outperformed XRT alone in killing tumor cells, suggesting a promising strategy for more effective cancer treatments.
View Article and Find Full Text PDF

. Clinical outcomes after proton therapy have shown some variability that is not fully understood. Different approaches have been suggested to explain the biological outcome, but none has yet provided a comprehensive and satisfactory rationale for observed toxicities.

View Article and Find Full Text PDF

The induction and repair of DNA double-strand breaks (DSBs) are critical factors in the treatment of cancer by radiotherapy. To investigate the relationship between incident radiation and cell death through DSB induction many in silico models have been developed. These models produce and use custom formats of data, specific to the investigative aims of the researchers, and often focus on particular pairings of damage and repair models.

View Article and Find Full Text PDF

Ovarian cancer (OC) is the most lethal gynecologic malignancy (5-y overall survival rate, 46%). OC is generally detected when it has already spread to the peritoneal cavity (peritoneal carcinomatosis). This study investigated whether gadolinium-based nanoparticles (Gd-NPs) increase the efficacy of targeted radionuclide therapy using [Lu]Lu-DOTA-trastuzumab (an antibody against human epidermal growth factor receptor 2).

View Article and Find Full Text PDF

Background And Objective: MHV370, a dual antagonist of human Toll-like receptors (TLR) 7 and 8, suppresses cytokines and interferon-stimulated genes in vitro and in vivo, and  has demonstrated efficacy in murine models of lupus. This first-in-human study aimed to evaluate the safety, tolerability, pharmacokinetics and pharmacodynamics of single and multiple doses of MHV370 in healthy adults, as well as the effects of food consumption on a single dose of MHV370.

Methods: This was a phase 1, randomised, placebo-controlled study conducted in three parts.

View Article and Find Full Text PDF

Introduction: DNA damage is the main predictor of response to radiation therapy for cancer. Its Q8 quantification and characterization are paramount for treatment optimization, particularly in advanced modalities such as proton and alpha-targeted therapy.

Methods: We present a novel approach called the Microdosimetric Gamma Model (MGM) to address this important issue.

View Article and Find Full Text PDF

. To commission a proton, double-scattering FLASH beamline by maximizing efficiency and field size, enabling higher-linear energy transfer FLASH radiotherapy to cells and small animals using a spread-out Bragg peak (SOBP) treatment configuration. We further aim to provide a configuration guide for the design of future FLASH proton double-scattering (DS) beamlines.

View Article and Find Full Text PDF

. The TOPAS-nBio Monte Carlo track structure simulation code, a wrapper of Geant4-DNA, was extended for its use in pulsed and longtime homogeneous chemistry simulations using the Gillespie algorithm..

View Article and Find Full Text PDF

Ultra-high dose rate irradiation has been reported to protect normal tissues more than conventional dose rate irradiation. This tissue sparing has been termed the FLASH effect. We investigated the FLASH effect of proton irradiation on the intestine as well as the hypothesis that lymphocyte depletion is a cause of the FLASH effect.

View Article and Find Full Text PDF

FLASH radiation therapy (FLASH-RT), delivered with ultrahigh dose rate (UHDR), may allow patients to be treated with less normal tissue toxicity for a given tumor dose compared with currently used conventional dose rate. Clinical trials are being carried out and are needed to test whether this improved therapeutic ratio can be achieved clinically. During the clinical trials, quality assurance and credentialing of equipment and participating sites, particularly pertaining to UHDR-specific aspects, will be crucial for the validity of the outcomes of such trials.

View Article and Find Full Text PDF

Background: Ultra-high dose rate (FLASH) radiation has been reported to efficiently suppress tumor growth while sparing normal tissue; however, the mechanism of the differential tissue sparing effect is still not known. Oxygen has long been known to profoundly impact radiobiological responses, and radiolytic oxygen depletion has been considered to be a possible cause or contributor to the FLASH phenomenon.

Purpose: This work investigates the impact of tissue pO profiles, oxygen depletion per unit dose (g), and the oxygen concentration yielding half-maximum radiosensitization (the average of its maximum value and one) (k) in tumor and normal tissue.

View Article and Find Full Text PDF