Background: Lysins (cell wall hydrolases) targeting gram-negative organisms require engineering to permeabilize the outer membrane and access subjacent peptidoglycan to facilitate killing. In the current study, the potential clinical utility for the engineered lysin CF-370 was examined in vitro and in vivo against gram-negative pathogens important in human infections.
Methods: Minimum inhibitory concentration (MICs) and bactericidal activity were determined using standard methods.
Background: Novel treatments are needed for Staphylococcus aureus bacteremia, particularly for methicillin-resistant S. aureus (MRSA). Exebacase is a first-in-class antistaphylococcal lysin that is rapidly bactericidal and synergizes with antibiotics.
View Article and Find Full Text PDFOrthopedic foreign body-associated infection can be difficult to treat due to the formation of biofilms protecting microorganisms from both antimicrobials and the immune system. Exebacase is an antistaphylococcal lysin (cell wall hydrolase) under consideration for local treatment for biofilm-based infections caused by methicillin-resistant Staphylococcus aureus (MRSA). To determine the activity of exebacase, we formed MRSA biofilms on orthopedic Kirschner wires and exposed them to varying concentrations (0.
View Article and Find Full Text PDFLysins (peptidoglycan hydrolases) are promising new protein-based antimicrobial candidates under development to address rising antibiotic resistance encountered among pathogenic bacteria. Exebacase is an antistaphylococcal lysin and the first member of the lysin class to have entered clinical trials in the United States. In this study, the bacteriolytic activity of exebacase was characterized with time-kill assays, turbidity reduction assays, and microscopy.
View Article and Find Full Text PDFExebacase (CF-301) belongs to a novel class of protein-based antibacterial agents, called lysins (peptidoglycan hydrolases). Exebacase exhibits potent antistaphylococcal activity and is the first lysin to initiate clinical trials in the United States. To support clinical development, the potential for resistance development to exebacase was assessed over 28 days of serial daily subculture in the presence of increasing concentrations of the lysin performed in its reference broth medium.
View Article and Find Full Text PDFThe nonlinear optical properties of zinc oxide nanoparticles (ZnONPs) in distilled water were measured using a femtosecond laser and the Z-scan technique. The ZnONPs colloids were created by the ablation of zinc bulk in distilled water with a 532 nm Nd: YAG laser. Transmission electron microscopy, an ultraviolet-visible spectrophotometer, and atomic absorption spectrophotometry were used to determine the size, shape, absorption spectra, and concentration of the ZnONPs colloids.
View Article and Find Full Text PDF: is the most common cause of orthopedic infections and can be challenging to treat, especially in the presence of a foreign body. The antistaphylococcal lysins exebacase and CF-296 have rapid bactericidal activity, a low propensity for resistance development, and synergize with some antibiotics. : Rabbit implant-associated osteomyelitis was induced by drilling into the medial tibia followed by locally delivering exebacase, CF-296, or lysin carrier.
View Article and Find Full Text PDFStaphylococcus epidermidis is one of the main pathogens responsible for bone and joint infections, especially those involving prosthetic materials, due to its ability to form biofilms. In these cases, biofilm formation, combined with increased antimicrobial resistance, often results in therapeutic failures. In this context, the development of innovative therapies active against S.
View Article and Find Full Text PDFTesting of large populations for virus infection is now a reality worldwide due to the coronavirus (SARS-CoV-2) pandemic. The demand for SARS-CoV-2 testing using alternatives other than PCR led to the development of mass spectrometry (MS)-based assays. However, MS for SARS-CoV-2 large-scale testing have some downsides, including complex sample preparation and slow data analysis.
View Article and Find Full Text PDFData-independent acquisition (DIA) allows comprehensive proteome coverage, while it also potentially works as a unified protocol to determine a multitude of proteins found in blood. Because of its high specificity, mass spectrometry may greatly reduce the interference observed in other assays to evaluate blood markers. Here, we combined DIA with volumetric absorptive microsampling (VAMS) and automated proteomics sample processing in a platform to assess clinical markers.
View Article and Find Full Text PDFDirect lytic agents (DLAs) are novel antimicrobial compounds with unique mechanisms of action based on rapid cell wall destabilization and bacteriolysis. DLAs include two classes of purified polypeptides-lysins (peptidoglycan hydrolase enzymes) and amurins (outer membrane targeting peptides). Their intended use is to kill bacteria in a manner that is complimentary to and synergistic with traditional antibiotics without selection for DLA resistance.
View Article and Find Full Text PDFExebacase is a lysin (cell wall hydrolase) with direct lytic activity against Staphylococcus aureus including methicillin-resistant S. aureus (MRSA). Time-kill analysis experiments illustrated bactericidal activity of exebacase-daptomycin against MRSA strains MW2 and 494.
View Article and Find Full Text PDFExebacase (CF-301) is a novel antistaphylococcal lysin (cell wall hydrolase) in phase 3 of clinical development for the treatment of Staphylococcus aureus bacteremia, including right-sided endocarditis, used in addition to standard-of-care antibiotics. In the current study, the potential for exebacase to treat S. aureus pneumonia was explored using bovine pulmonary surfactant (Survanta) and using a lethal murine pneumonia model.
View Article and Find Full Text PDFObjectives: CF-296 is a lysin in pre-clinical development for the treatment of MSSA and MRSA infections, used in addition to standard-of-care (SOC) antibiotics. We evaluated the efficacy of CF-296 alone and in addition to daptomycin or vancomycin against Staphylococcus aureus in the neutropenic mouse thigh infection model.
Methods: Eight isolates (one MSSA and seven MRSA) were studied.
Exebacase (CF-301), a novel, antistaphylococcal lysin (cell wall hydrolase) is the first agent of this class to enter late-stage clinical development (phase 3, NCT04160468) for the treatment of Staphylococcus aureus bacteremia, including right-sided endocarditis. A multilaboratory Clinical and Laboratory Standards Institute (CLSI) M23-defined tier 2 quality control (QC) study was conducted to establish exebacase QC ranges for a new reference broth microdilution method. S.
View Article and Find Full Text PDFAntimicrob Agents Chemother
June 2021
Exebacase (CF-301) belongs to a new class of protein-based antibacterial agents, known as lysins (peptidoglycan hydrolases). Exebacase, a novel lysin with antistaphylococcal activity, is in phase 3 of clinical development. To advance into the clinic, it was necessary to develop an accurate and reproducible method for exebacase MIC determination.
View Article and Find Full Text PDFThe outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is pressing public health systems around the world, and large population testing is a key step to control this pandemic disease. Here, we develop a high-throughput targeted proteomics assay to detect SARS-CoV-2 nucleoprotein peptides directly from nasopharyngeal and oropharyngeal swabs. A modified magnetic particle-based proteomics approach implemented on a robotic liquid handler enables fully automated preparation of 96 samples within 4 hours.
View Article and Find Full Text PDFMethicillin-resistant (MRSA) poses significant therapeutic challenges related to its frequency in clinical infections, innate virulence properties, and propensity for multiantibiotic resistance. MRSA is among the most common causes of endovascular infections, including infective endocarditis (IE). Our objective was to employ transthoracic echocardiography (TTE) to evaluate the effect of exebacase, a novel direct lytic agent, in experimental aortic valve MRSA IE.
View Article and Find Full Text PDFBACKGROUNDNovel therapeutic approaches are critically needed for Staphylococcus aureus bloodstream infections (BSIs), particularly for methicillin-resistant S. aureus (MRSA). Exebacase, a first-in-class antistaphylococcal lysin, is a direct lytic agent that is rapidly bacteriolytic, eradicates biofilms, and synergizes with antibiotics.
View Article and Find Full Text PDFWe evaluated the efficacy of escalating doses of exebacase administered with subtherapeutic daptomycin exposures against 8 isolates in a neutropenic murine thigh infection model. Daptomycin alone resulted in mean growth of 0.39 ± 1.
View Article and Find Full Text PDFsynergy between an antimicrobial protein lysin (cell wall hydrolase) called exebacase and each of 12 different antibiotics was examined against isolates using a nonstandard medium approved for exebacase susceptibility testing by the Clinical and Laboratory Standards Institute. In the checkerboard assay format, fractional inhibitory concentration index values of ≤0.5, consistent with synergy, were observed for the majority of interactions tested.
View Article and Find Full Text PDFLysins are direct lytic agents which act through enzymatic cell-wall-hydrolysis and represent a potential new class of antimicrobial agents in development to treat antibiotic-resistant bacterial infections. Exebacase (CF-301) is a first-in-class lysin now in clinical development for the treatment of Staphylococcus aureus (S. aureus) bacteremia and infective endocarditis (IE) when used in addition to conventional antibiotics.
View Article and Find Full Text PDFBacteriophage-derived lysins are being developed as anti-infective agents. In an acute osteomyelitis methicillin-resistant (MRSA) model, rats receiving no treatment or treatment with daptomycin, exebacase (CF-301), or daptomycin plus exebacase had means of 5.13, 4.
View Article and Find Full Text PDF