Publications by authors named "Schrenk O"

Online adaption of treatment plans on a magnetic resonance (MR)-Linac enables the daily creation of new (adapted) treatment plans using current anatomical information of the patient as seen on MR images. Plan quality assurance (QA) relies on a secondary dose calculation (SDC) that is required because a pretreatment measurement is impossible during the adaptive workflow. However, failure mode and effect analysis of the adaptive planning process shows a large number of error sources, and not all of them are covered by SDC.

View Article and Find Full Text PDF

Background And Purpose: The clinical introduction of on-table adaptive radiotherapy with Magnetic Resonance (MR)-guided linear accelerators (Linacs) yields new challenges and potential risks. Since the adapted plan is created within a highly interdisciplinary workflow with the patient in treatment position, time pressure or erroneous communication may lead to various possibly hazardous situations. To identify risks and implement a safe workflow, a proactive risk analysis has been conducted.

View Article and Find Full Text PDF

MR-integrated radiotherapy requires suitable dosimetry detectors to be used in magnetic fields. This study investigates the feasibility of using dedicated MR-compatible ionization chambers at MR-integrated radiotherapy devices. MR-compatible ionization chambers (Exradin A19MR, A1SLMR, A26MR, A28MR) were precisely modeled and their relative response in a 6MV treatment beam in the presence of a magnetic field was simulated using EGSnrc.

View Article and Find Full Text PDF

Background And Purpose: Inverse treatment planning for lung cancer can be challenging since density heterogeneities may appear inside the planning target volume (PTV). One method to improve the quality of intensity modulation is the override of low density tissues inside the PTV during plan optimization. For magnetic resonance-guided radiation therapy (MRgRT), where the influence of the magnetic field on secondary electrons is sensitive to the tissue density, the reliability of density overrides has not yet been proven.

View Article and Find Full Text PDF

Purpose: Magnetic resonance image-guided radiotherapy (MRgRT) has the potential to increase the accuracy of radiation treatment delivery. Several research groups have developed hybrid MRgRT devices differing by radiation source used and magnetic field orientation and strength. In this work, we investigate the impact of different magnetic field orientations and strengths on the treatment planning of nonsmall cell lung cancer patients (NSCLC).

View Article and Find Full Text PDF

The aim of this work was to determine magnetic field correction factors that are needed for dosimetry in hybrid devices for MR-guided radiotherapy for Farmer-type ionization chambers for different magnetic field strengths and field orientations. The response of six custom-built Farmer-type chambers irradiated at a 6 MV linac was measured in a water tank positioned in a magnet with magnetic field strengths between 0.0 T and 1.

View Article and Find Full Text PDF