Publications by authors named "Schreck F"

Feshbach association of ultracold molecules using narrow resonances requires exquisite control of the applied magnetic field. Here, we present a magnetic field control system to deliver magnetic fields of over 1000 G with ppm-level precision integrated into an ultracold-atom experimental setup. We combine a battery-powered, current-stabilized power supply with active feedback stabilization of the magnetic field using fluxgate magnetic field sensors.

View Article and Find Full Text PDF
Article Synopsis
  • Bose-Einstein condensates (BECs) are significant for advancing quantum science and atomic physics, enabling applications like quantum simulation and sensing.
  • A breakthrough in creating a continuous-wave (CW) condensate of strontium atoms allows for sustained matter waves, overcoming the limitations of time-sequential cooling stages.
  • This new experimental approach, akin to a CW optical laser, opens up possibilities for continuous coherent-matter-wave devices, enhancing atom optics technology.
View Article and Find Full Text PDF

Imaging and manipulating individual atoms with submicrometer separation can be instrumental for quantum simulation of condensed matter Hamiltonians and quantum computation with neutral atoms. Here we present an open-source design of a microscope objective for atomic strontium, consisting solely of off-the-shelf lenses, that is diffraction-limited for 461 nm light. A prototype built with a simple stacking design is measured to have a resolution of 0.

View Article and Find Full Text PDF

We report on spectroscopic studies of hot and ultracold RbSr molecules, and combine the results in an analysis that allows us to fit a potential energy curve (PEC) for the X(1)Σ ground state bridging the short-to-long-range domains. The ultracold RbSr molecules are created in a μK sample of Rb and Sr atoms and probed by two-colour photoassociation spectroscopy. The data yield the long-range dispersion coefficients C and C, along with the total number of supported bound levels.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers successfully created a continuously loaded magneto-optical trap (MOT) for strontium-88 (^88Sr), achieving a high phase-space density of 1.3(2)×10^{-3}, significantly surpassing previous MOT records.
  • They utilized a technique involving multiple laser cooling stages before trapping atoms in the MOT, which operates on a specific 7.4-kHz linewidth of the Sr intercombination line.
  • Additionally, they were able to produce a Bose-Einstein condensate within the MOT, indicating that this high phase-space density MOT could serve as a foundation for future advancements like continuous atom lasers and precise atom interferometers or clocks.
View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on a mixture of ultracold fermionic K40 atoms and Li6K40 dimers in a unique interaction scenario at a heteronuclear atomic Feshbach resonance.
  • Using radio-frequency spectroscopy, researchers found a surprising attraction between the normally repulsive atom-dimer interaction due to a three-body effect involving K40 and Li6 atoms.
  • The results highlight how having different masses in a fermionic system can significantly alter interaction dynamics compared to systems with balanced masses.
View Article and Find Full Text PDF

We report on Bose-Einstein condensation in a gas of strontium atoms, using laser cooling as the only cooling mechanism. The condensate is formed within a sample that is continuously Doppler cooled to below 1  μK on a narrow-linewidth transition. The critical phase-space density for condensation is reached in a central region of the sample, in which atoms are rendered transparent for laser cooling photons.

View Article and Find Full Text PDF

Alkaline-earth-metal atoms can exhibit long-range dipolar interactions, which are generated via the coherent exchange of photons on the (3)P(0) - (3)D(1) transition of the triplet manifold. In the case of bosonic strontium, which we discuss here, this transition has a wavelength of 2.6 μm and a dipole moment of 4.

View Article and Find Full Text PDF

We report on the creation of ultracold (84)Sr(2) molecules in the electronic ground state. The molecules are formed from atom pairs on sites of an optical lattice using stimulated Raman adiabatic passage (STIRAP). We achieve a transfer efficiency of 30% and obtain 4×10(4) molecules with full control over the external and internal quantum state.

View Article and Find Full Text PDF

Ultracold Fermi gases with tunable interactions provide a test bed for exploring the many-body physics of strongly interacting quantum systems. Over the past decade, experiments have investigated many intriguing phenomena, and precise measurements of ground-state properties have provided benchmarks for the development of theoretical descriptions. Metastable states in Fermi gases with strong repulsive interactions represent an exciting area of development.

View Article and Find Full Text PDF

We report on the expansion of an ultracold Fermi-Fermi mixture of (6)Li and (40)K under conditions of strong interactions controlled via an interspecies Feshbach resonance. We study the expansion of the mixture after release from the trap and, in a narrow magnetic-field range, we observe two phenomena related to hydrodynamic behavior. The common inversion of the aspect ratio is found to be accompanied by a collective effect where both species stick together and expand jointly despite of their widely different masses.

View Article and Find Full Text PDF

We investigate the collisional stability of a sample of 40K atoms immersed in a tunable spin mixture of 6Li atoms. In this three-component Fermi-Fermi mixture, we find very low loss rates in a wide range of interactions as long as molecule formation of 6Li is avoided. The stable fermionic mixture with two resonantly interacting spin states of one species together with another species is a promising system for a broad variety of phenomena in few- and many-body quantum physics.

View Article and Find Full Text PDF

We report on the attainment of Bose-Einstein condensation with ultracold strontium atoms. We use the (84)Sr isotope, which has a low natural abundance but offers excellent scattering properties for evaporative cooling. Accumulation in a metastable state using a magnetic-trap, narrowline cooling, and straightforward evaporative cooling in an optical trap lead to pure condensates containing 1.

View Article and Find Full Text PDF

We report on the observation of Feshbach resonances in an ultracold mixture of two fermionic species, (6)Li and (40)K. The experimental data are interpreted using a simple asymptotic bound state model and full coupled channels calculations. This unambiguously assigns the observed resonances in terms of various s- and p-wave molecular states and fully characterizes the ground-state scattering properties in any combination of spin states.

View Article and Find Full Text PDF

The output of two grating-stabilized external-cavity diode lasers was injected into a semiconductor tapered amplif ier in a master oscillator-power amplif ier (MOPA) configuration. At a wavelength of 671 nm this configuration produced 210 mW of power in a diffraction-limited mode with two frequency components of narrow linewidth. The frequency difference delta was varied from 20 MHz to 12 GHz, while the power ratio of the two components was freely adjustable.

View Article and Find Full Text PDF

We report the direct observation of sub-Poissonian number fluctuation for a degenerate Bose gas confined in an optical trap. Reduction of number fluctuations below the Poissonian limit is observed for average numbers that range from 300 to 60 atoms.

View Article and Find Full Text PDF

We present an experimental method to create a single high frequency optical trap for atoms based on an elongated Hermite-Gaussian TEM01 mode beam. This trap results in confinement strength similar to that which may be obtained in an optical lattice. We discuss an optical setup to produce the trapping beam and then detail a method to load a Bose-Einstein Condensate (BEC) into a TEM01 trap.

View Article and Find Full Text PDF

We report the production of matter-wave solitons in an ultracold lithium-7 gas. The effective interaction between atoms in a Bose-Einstein condensate is tuned with a Feshbach resonance from repulsive to attractive before release in a one-dimensional optical waveguide. Propagation of the soliton without dispersion over a macroscopic distance of 1.

View Article and Find Full Text PDF

We report the observation of coexisting Bose-Einstein condensate (BEC) and Fermi gas in a magnetic trap. With a very small fraction of thermal atoms, the 7Li condensate is quasipure and in thermal contact with a 6Li Fermi gas. The lowest common temperature is 0.

View Article and Find Full Text PDF