Publications by authors named "Schotte F"

Photoactive yellow protein (PYP) is a signaling protein whose internal p-coumaric acid chromophore undergoes reversible, light-induced -to- isomerization, which triggers a sequence of structural changes that ultimately lead to a signaling state. Since its discovery nearly 40 years ago, PYP has attracted much interest and has become one of the most extensively studied proteins found in nature. The method of time-resolved crystallography, pioneered by Keith Moffat, has successfully characterized intermediates in the PYP photocycle at near atomic resolution over 12 decades of time down to the sub-picosecond time scale, allowing one to stitch together a movie and literally watch a protein as it functions.

View Article and Find Full Text PDF

Time-resolved small- and wide-angle X-ray scattering studies of proteins in solution based on the pump-probe approach unveil structural information from intermediates over a broad range of length and time scales. In spite of the promise of this methodology, only a fraction of the wealth of information encoded in scattering data has been extracted in studies performed thus far. Here, we discuss the methodology, summarize results from recent time-resolved X-ray scattering studies, and examine the potential to extract additional information from these scattering curves.

View Article and Find Full Text PDF

Correlated motions of proteins are critical to function, but these features are difficult to resolve using traditional structure determination techniques. Time-resolved X-ray methods hold promise for addressing this challenge, but have relied on the exploitation of exotic protein photoactivity, and are therefore not generalizable. Temperature jumps, through thermal excitation of the solvent, have been utilized to study protein dynamics using spectroscopic techniques, but their implementation in X-ray scattering experiments has been limited.

View Article and Find Full Text PDF

It is well-known that tetrameric hemoglobin binds ligands cooperatively by undergoing a ligand-induced T → R quaternary structure transition, a structure-function relationship that has long served as a model system for understanding allostery in proteins. However, kinetic studies of the reverse, R → T quaternary structure transition following photolysis of carbonmonoxyhemoglobin (HbCO) reveal complex behavior that may be better explained by the presence of two different R quaternary structures coexisting in thermal equilibrium. Indeed, we report here time-resolved small- and wide-angle X-ray scattering (SAXS/WAXS) patterns of HbCO following a temperature jump that not only provide unambiguous evidence for more than one R state, but also unveil the time scale for interconversion between them.

View Article and Find Full Text PDF

The capacity to respond to environmental changes is crucial to an organism's survival. Halorhodospira halophila is a photosynthetic bacterium that swims away from blue light, presumably in an effort to evade photons energetic enough to be genetically harmful. The protein responsible for this response is believed to be photoactive yellow protein (PYP), whose chromophore photoisomerizes from trans to cis in the presence of blue light.

View Article and Find Full Text PDF

We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals.

View Article and Find Full Text PDF

We have developed the method of picosecond Laue crystallography and used this capability to probe ligand dynamics in tetrameric R-state hemoglobin (Hb). Time-resolved, 2 Å-resolution electron density maps of photolyzed HbCO reveal the time-dependent population of CO in the binding (A) and primary docking (B) sites of both α and β subunits from 100 ps to 10 μs. The proximity of the B site in the β subunit is about 0.

View Article and Find Full Text PDF

We have exploited the principle of photoselection and the method of time-resolved small-angle X-ray scattering (SAXS) to investigate protein size and shape changes following photoactivation of photoactive yellow protein (PYP) in solution with ∼150 ps time resolution. This study partially overcomes the orientational average intrinsic to solution scattering methods and provides structural information at a higher level of detail. Photoactivation of the p-coumaric acid (pCA) chromophore in PYP produces a highly contorted, short-lived, red-shifted intermediate (pR0), and triggers prompt, protein compaction of approximately 0.

View Article and Find Full Text PDF

To understand how signaling proteins function, it is crucial to know the time-ordered sequence of events that lead to the signaling state. We recently developed on the BioCARS 14-IDB beamline at the Advanced Photon Source the infrastructure required to characterize structural changes in protein crystals with near-atomic spatial resolution and 150-ps time resolution, and have used this capability to track the reversible photocycle of photoactive yellow protein (PYP) following trans-to-cis photoisomerization of its p-coumaric acid (pCA) chromophore over 10 decades of time. The first of four major intermediates characterized in this study is highly contorted, with the pCA carbonyl rotated nearly 90° out of the plane of the phenolate.

View Article and Find Full Text PDF

BioCARS, a NIH-supported national user facility for macromolecular time-resolved X-ray crystallography at the Advanced Photon Source (APS), has recently completed commissioning of an upgraded undulator-based beamline optimized for single-shot laser-pump X-ray-probe measurements with time resolution as short as 100 ps. The source consists of two in-line undulators with periods of 23 and 27 mm that together provide high-flux pink-beam capability at 12 keV as well as first-harmonic coverage from 6.8 to 19 keV.

View Article and Find Full Text PDF

We have developed a time-resolved x-ray scattering diffractometer capable of probing structural dynamics of proteins in solution with 100-ps time resolution. This diffractometer, developed on the ID14B BioCARS (Consortium for Advanced Radiation Sources) beamline at the Advanced Photon Source, records x-ray scattering snapshots over a broad range of q spanning 0.02-2.

View Article and Find Full Text PDF

A chopper system for time resolved pump-probe experiments with x-ray beams from a synchrotron is described. The system has three parts: a water-cooled heatload chopper, a high-speed chopper, and a millisecond shutter. The chopper system, which is installed in beamline ID09B at the European Synchrotron Radiation Facility, provides short x-ray pulses for pump-probe experiments with ultrafast lasers.

View Article and Find Full Text PDF

We demonstrate tracking of protein structural changes with time-resolved wide-angle X-ray scattering (TR-WAXS) with nanosecond time resolution. We investigated the tertiary and quaternary conformational changes of human hemoglobin under nearly physiological conditions triggered by laser-induced ligand photolysis. We also report data on optically induced tertiary relaxations of myoglobin and refolding of cytochrome c to illustrate the wide applicability of the technique.

View Article and Find Full Text PDF

When polychromatic X-rays are shined onto crystalline material, they generate a Laue diffraction pattern. At third generation synchrotron radiation sources, a single X-ray pulse of approximately 100 ps duration is enough to produce interpretable Laue data from biomolecular crystals. Thus, by initiating biological turnover in a crystalline protein, structural changes along the reaction pathway may be filmed by ultra-fast Laue diffraction.

View Article and Find Full Text PDF

Picosecond time-resolved crystallography was used to follow the dissociation of carbon monoxide from the heme pocket of a mutant sperm whale myoglobin and the resultant conformational changes. Electron-density maps have previously been created at various time points and used to describe amino-acid side-chain and carbon monoxide movements. In this work, difference refinement was employed to generate atomic coordinates at each time point in order to create a more explicit quantitative representation of the photo-dissociation process.

View Article and Find Full Text PDF

Wavelength normalization is an essential part of processing of Laue X-ray diffraction data and is critically important for deriving accurate structure-factor amplitudes. The results of wavelength normalization for Laue data obtained in nanosecond time-resolved experiments at the ID09 beamline at the European Synchrotron Radiation Facility, Grenoble, France, are presented. Several wiggler and undulator insertion devices with complex spectra were used.

View Article and Find Full Text PDF

Work carried out over the last 30 years unveiled the role of structural dynamics in controlling protein function. Cavity networks modulate structural dynamics trajectories and are functionally relevant; in globins they have been assigned a role in ligand migration and docking. These findings raised renewed interest for time-resolved structural investigations of myoglobin (Mb), a simple heme protein displaying a photosensitive iron-ligand bond.

View Article and Find Full Text PDF

Determining 3D intermediate structures during the biological action of proteins in real time under ambient conditions is essential for understanding how proteins function. Here we use time-resolved Laue crystallography to extract short-lived intermediate structures and thereby unveil signal transduction in the blue light photoreceptor photoactive yellow protein (PYP) from Halorhodospira halophila. By analyzing a comprehensive set of Laue data during the PYP photocycle (forty-seven time points from one nanosecond to one second), we track all atoms in PYP during its photocycle and directly observe how absorption of a blue light photon by its p-coumaric acid chromophore triggers a reversible photocycle.

View Article and Find Full Text PDF

A joint analysis of all-atom molecular dynamics (MD) calculations and picosecond time-resolved x-ray structures was performed to gain single-molecule insights into mechanisms of protein function. Ensemble-averaged MD simulations of the L29F mutant of myoglobin after ligand dissociation reproduce the direction, amplitude, and time scales of crystallographically determined structural changes. This close agreement with experiments at comparable resolution in space and time validates the individual MD trajectories.

View Article and Find Full Text PDF

A detailed mechanistic understanding of how a protein functions requires knowledge not only of its static structure, but also how its conformation evolves as it executes its function. The recent development of picosecond time-resolved X-ray crystallography has allowed us to visualize in real time and with atomic detail the conformational evolution of a protein. Here, we report the photolysis-induced structural evolution of wild-type and L29F myoglobin over times ranging from 100 ps to 3 micros.

View Article and Find Full Text PDF

We use time-resolved crystallography to observe the structural progression of a bacterial blue light photoreceptor throughout its photocycle. Data were collected from 10 ns to 100 ms after photoactivation of the E46Q mutant of photoactive yellow protein. Refinement of transient chromophore conformations shows that the spectroscopically distinct intermediates are formed via progressive disruption of the hydrogen bond network to the chromophore.

View Article and Find Full Text PDF

We present a time-resolved x-ray diffraction study to monitor the recombination of laser-dissociated iodine molecules dissolved in CCl4. The change in structure of iodine is followed during the whole recombination process. The deexcitation of solute molecules produces a heating of the solvent and induces tiny changes in its structure.

View Article and Find Full Text PDF

The photocycle in photoactive yellow protein (PYP) crystals was studied by single-crystal absorption spectroscopy with experimental setups for low-temperature and time-resolved measurements. Thin and flat PYP crystals, suitable for light absorption studies, were obtained using special crystallization conditions. Illumination of PYP crystals at 100 K led to the formation of a photostationary state, which includes at least one hypsochromic and one bathochromic photoproduct that resemble PYP(H) and PYP(B), respectively.

View Article and Find Full Text PDF