Somatosensory stimuli guide and shape behavior, from immediate protective reflexes to longer-term learning and higher-order processes related to pain and touch. However, somatosensory inputs are challenging to control in awake mammals due to the diversity and nature of contact stimuli. Application of cutaneous stimuli is currently limited to relatively imprecise methods as well as subjective behavioral measures.
View Article and Find Full Text PDFQuantitative trait locus mapping of chemical/inflammatory pain in the mouse identified the Avpr1a gene, which encodes the vasopressin-1A receptor (V1AR), as being responsible for strain-dependent pain sensitivity to formalin and capsaicin. A genetic association study in humans revealed the influence of a single nucleotide polymorphism (rs10877969) in AVPR1A on capsaicin pain levels, but only in male subjects reporting stress at the time of testing. The analgesic efficacy of the vasopressin analog desmopressin revealed a similar interaction between the drug and acute stress, as desmopressin inhibition of capsaicin pain was only observed in nonstressed subjects.
View Article and Find Full Text PDFOxytocin can influence various spinal functions. However, little is known about the spinal neuronal networks responsible for oxytocin effects. The aim of this study was to localize and characterize spinal neurons expressing oxytocin receptors.
View Article and Find Full Text PDFThe neuropeptides oxytocin (OXT) and arginine vasopressin (AVP) contribute to the regulation of diverse cognitive and physiological functions including nociception. Indeed, OXT has been reported to be analgesic when administered directly into the brain, the spinal cord, or systemically. Here, we characterized the phenotype of oxytocin receptor (OTR) and vasopressin-1A receptor (V1AR) null mutant mice in a battery of pain assays.
View Article and Find Full Text PDFThe aim of this study was to label selectively and to map central vasopressin (AVP) and oxytocin (OT) binding sites in the common marmoset. [(125)I]VPA, a compound selective in rodents and human for the AVP V(1a) receptor, yielded the same labeling pattern as [(3)H]AVP, thus suggesting that most AVP receptors present in the marmoset brain are of the V(1a) subtype. Numerous areas exhibited AVP binding sites, among which the olfactory bulb, the accumbens nucleus, the bed nucleus of the stria terminalis, the hypothalamic suprachiasmatic, arcuate and ventromedial nuclei, the medial amygdaloid nucleus, the nucleus of the solitary tract and the cerebral cortex.
View Article and Find Full Text PDFIt is widely appreciated that there is significant inter-individual variability in pain sensitivity, yet only a handful of contributing genetic variants have been identified. Computational genetic mapping and quantitative trait locus analysis suggested that variation within the gene coding for the beta3 subunit of the Na+,K+-ATPase pump (Atp1b3) contributes to inter-strain differences in the early phase formalin pain behavior. Significant strain differences in Atp1b3 gene expression, beta3 protein expression, and biophysical properties of the Na+,K+ pump in dorsal root ganglia neurons from resistant (A/J) and sensitive (C57BL/6J) mouse strains supported the genetic prediction.
View Article and Find Full Text PDFChronic exposure to opioids leads to physical dependence, which manifests as the symptoms of drug withdrawal. Interindividual differences in withdrawal symptom severity are well known, and at least partially due to genetic variation. To identify genes contributing to variation in withdrawal severity, we chronically treated 30 strains of the AcB/BcA recombinant congenic mouse strain set, including their A/J and C57BL/6J (B6) progenitors, with morphine for seven days and compared jumping frequencies--a sensitive and widely used index of withdrawal magnitude--during naloxone-precipitated withdrawal (NPW).
View Article and Find Full Text PDFWe have previously shown that, in AKR and C57BL/6 mice, a genetic polymorphism results in differential expression of the peptide, calcitonin gene-related polypeptide (CGRP), explaining a strain difference in thermal pain sensitivity. Although CGRP is widely distributed in the brain, little is known about the effects of supraspinal CGRP. We used AKR and C57BL/6 mice as a model to explore the effects of centrally (intracerebroventricular) injected CGRP and the CGRP receptor antagonists, CGRP(8-37) and BIBN4096BS, in a series of behavioral assays.
View Article and Find Full Text PDF