Chronic kidney diseaQueryse (CKD) is associated with oxidative stress which can interrupt the nitric oxide (NO)/soluble guanylyl cyclase (sGC) signaling and decrease cyclic guanosine monophosphate (cGMP) production. Low cGMP concentrations can cause kidney damage and progression of CKD. The novel sGC activator runcaciguat targets the oxidized and heme-free form of sGC, restoring cGMP production under oxidative stress.
View Article and Find Full Text PDFBackground And Purpose: Generation of cGMP via NO-sensitive soluble guanylyl cyclase (sGC) has been implicated in the regulation of renal functions. Chronic kidney disease (CKD) is associated with decreased NO bioavailability, increased oxidative stress and oxidation of sGC to its haem-free form, apo-sGC. Apo-sGC cannot be activated by NO, resulting in impaired cGMP signalling that is associated with chronic kidney disease progression.
View Article and Find Full Text PDFHerein we describe the discovery, mode of action, and preclinical characterization of the soluble guanylate cyclase (sGC) activator runcaciguat. The sGC enzyme, via the formation of cyclic guanosine monophoshphate, is a key regulator of body and tissue homeostasis. sGC activators with their unique mode of action are activating the oxidized and heme-free and therefore NO-unresponsive form of sGC, which is formed under oxidative stress.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
February 2021
Renal arteriolar tone depends considerably on the dilatory action of nitric oxide (NO) via activation of soluble guanylyl cyclase (sGC) and cGMP action. NO deficiency and hypoxia/reoxygenation are important pathophysiological factors in the development of acute kidney injury. It was hypothesized that the NO-sGC-cGMP system functions differently in renal afferent arterioles (AA) compared with efferent arterioles (EA) and that the sGC activator cinaciguat differentially dilates these arterioles.
View Article and Find Full Text PDFBackground: The family of vascular endothelial growth factors (VEGF) contains key regulators of blood and lymph vessel development, including VEGF-A, -B, -C, -D, and placental growth factor. The role of VEGF-B during physiological or pathological angiogenesis has not yet been conclusively delineated. Herein, we investigate the function of VEGF-B by the generation of mouse models of cancer with transgenic expression of VEGF-B or homozygous deletion of Vegfb.
View Article and Find Full Text PDFOur findings that PlGF is a cancer target and anti-PlGF is useful for anticancer treatment have been challenged by Bais et al. Here we take advantage of carcinogen-induced and transgenic tumor models as well as ocular neovascularization to report further evidence in support of our original findings of PlGF as a promising target for anticancer therapies. We present evidence for the efficacy of additional anti-PlGF antibodies and their ability to phenocopy genetic deficiency or silencing of PlGF in cancer and ocular disease but also show that not all anti-PlGF antibodies are effective.
View Article and Find Full Text PDFHalting tumor growth by interfering with tumor-induced angiogenesis is an attractive therapeutic approach. Such treatments include humanized antibodies blocking the activity of vascular endothelial growth factor (VEGF)-A (bevacizumab), soluble VEGF receptor (VEGFR) constructs (VEGF-Trap), or small-molecule inhibitors of VEGFR signaling, including PTK787/ZK222584 (PTK/ZK), sorafenib, and sunitinib. PTK/ZK has been shown previously to specifically block VEGF-induced phosphorylation of VEGFR-1, -2 and -3 and thereby to inhibit endothelial cell proliferation, differentiation, and tumor angiogenesis.
View Article and Find Full Text PDFLoss of expression of the cell-cell adhesion molecule E-cadherin is a hallmark of epithelial-mesenchymal transition (EMT) in development and in the progression from epithelial tumours to invasive and metastatic cancers. Here, we demonstrate that the loss of E-cadherin function upregulates expression of the neuronal cell adhesion molecule (NCAM). Subsequently, a subset of NCAM translocates from fibroblast growth factor receptor (FGFR) complexes outside lipid rafts into lipid rafts where it stimulates the non-receptor tyrosine kinase p59(Fyn) leading to the phosphorylation and activation of focal adhesion kinase and the assembly of integrin-mediated focal adhesions.
View Article and Find Full Text PDFAngiogenesis, the growth of new blood vessels from pre-existing vasculature, is a key process in several pathological conditions, including tumour growth and age-related macular degeneration. Vascular endothelial growth factors (VEGFs) stimulate angiogenesis and lymphangiogenesis by activating VEGF receptor (VEGFR) tyrosine kinases in endothelial cells. VEGFR-3 (also known as FLT-4) is present in all endothelia during development, and in the adult it becomes restricted to the lymphatic endothelium.
View Article and Find Full Text PDFMembers of the vascular endothelial growth factor (VEGF) family are critical players in angiogenesis and lymphangiogenesis. Although VEGF-A has been shown to exert fundamental functions in physiologic and pathologic angiogenesis, the exact role of the VEGF family member placental growth factor (PlGF) in tumor angiogenesis has remained controversial. To gain insight into PlGF function during tumor angiogenesis, we have generated transgenic mouse lines expressing human PlGF-1 in the beta cells of the pancreatic islets of Langerhans (Rip1PlGF-1).
View Article and Find Full Text PDFThe tumor suppressor Smad4 mediates signaling by the transforming growth factor beta (TGF-beta) superfamily of ligands. Previous studies showed that several TGF-beta family members exert important functions in hematopoiesis. Here, we studied the role of Smad4 in adult murine hematopoiesis using the inducible Mx-Cre/loxP system.
View Article and Find Full Text PDFIn many human carcinomas, expression of the lymphangiogenic factor vascular endothelial growth factor-D (VEGF-D) correlates with up-regulated lymphangiogenesis and regional lymph node metastasis. Here, we have used the Rip1Tag2 transgenic mouse model of pancreatic beta-cell carcinogenesis to investigate the functional role of VEGF-D in the induction of lymphangiogenesis and tumor progression. Expression of VEGF-D in beta cells of single-transgenic Rip1VEGF-D mice resulted in the formation of peri-insular lymphatic lacunae, often containing leukocyte accumulations and blood hemorrhages.
View Article and Find Full Text PDFTo generate transgenic mice that express Cre-recombinase exclusively in the megakaryocytic lineage, we modified a mouse bacterial artificial chromosome (BAC) clone by homologous recombination and replaced the first exon of the platelet factor 4 (Pf4), also called CXCL4, with a codon-improved Cre cDNA. Several strains expressing the transgene were obtained and one strain, Q3, was studied in detail. Crossing Q3 mice with the ROSA26-lacZ reporter strain showed that Cre-recombinase activity was confined to megakaryocytes.
View Article and Find Full Text PDFTo derive an efficient system for gene silencing in human hematopoietic stem cells (HSCs) we modified a lentiviral vector for small interfering RNA (siRNA) delivery. For this purpose, an H1 promoter-driven siRNA expression cassette was introduced into a lentiviral vector, and the p53 mRNA was chosen as a target for siRNA-mediated gene silencing. Using the recombinant lentivirus we infected human cord blood-derived CD34+ cells and obtained a transfection efficiency of up to 50%, as determined by expression of enhanced green fluorescent protein (EGFP).
View Article and Find Full Text PDFSOX9 transcription factor is involved in chondrocyte differentiation and male sex determination. Heterozygous defects in the human SOX9 gene cause campomelic dysplasia. The mechanisms behind SOX9 function are not understood despite the description of different target genes.
View Article and Find Full Text PDF