Publications by authors named "Scholtz V"

The paper reports a low-cost handheld source of a cold air plasma intended for biomedical applications that can be made by anyone (detailed technical information and a step-by-step guide for creating the NTP source are provided). The plasma source employs a 1.4 W corona discharge in the needle-to-cone electrode configuration and is an extremely simple device, consisting basically of two electrodes and a cheap power supply.

View Article and Find Full Text PDF

Fungal contamination poses a persistent challenge to industries, particularly in food, healthcare, and clinical sectors, due to the remarkable resilience of fungi in withstanding conventional control methods. In this context, our research delves into the comparative efficacy of UV radiation and non-thermal plasma (NTP) on key foodborne fungal contaminants - , , , and . The study examined the impact of varying doses of UV radiation on the asexual spores of all mentioned fungal strains.

View Article and Find Full Text PDF

Aim: The main objective of the study was to develop and validate a model for the growth of Aspergillus brasiliensis on surfaces, specifically on agar culture medium. An additional aim was to determine conditions for complete growth inhibition of this micromycete using two different nonthermal plasma (NTP) sources.

Methods And Results: The developed model uses two key parameters, namely the growth rate and growth delay, which depend on the cultivation temperature and the amount of inoculum.

View Article and Find Full Text PDF

Antibiotic resistance (ATBR) is increasing every year as the overuse of antibiotics (ATBs) and the lack of newly emerging antimicrobial agents lead to an efficient pathogen escape from ATBs action. This trend is alarming and the World Health Organization warned in 2021 that ATBR could become the leading cause of death worldwide by 2050. The development of novel ATBs is not fast enough considering the situation, and alternative strategies are therefore urgently required.

View Article and Find Full Text PDF
Article Synopsis
  • - Non-thermal plasma (NTP) is gaining attention in the food industry as a method for effectively decontaminating surfaces, especially against resilient microbial biofilms that resist standard disinfectants.
  • - A study comparing the effectiveness of NTP and UV radiation on mature biofilms of four common foodborne fungi showed that NTP resulted in significant damage to the biofilm structure and reduced harmful substances produced by the fungi.
  • - The findings suggest that NTP could serve as a more environmentally friendly and efficient alternative to traditional disinfection methods, highlighting its potential in biofilm eradication efforts.
View Article and Find Full Text PDF

Non-thermal plasma (NTP) is a well-known decontamination tool applicable for a wide range of microorganisms and viruses. Since the recent COVID-19 pandemic highlighted the need to decontaminate all daily used items, it is highly desirable to address the applicability of NTP, including its possible harmful effects. To the best of our knowledge, a comprehensive characterization of NTP effects on sensitive materials is still lacking.

View Article and Find Full Text PDF

Due to the emerging resistance of microorganisms and viruses to conventional treatments, the importance of self-disinfecting materials is highly increasing. Such materials could be silver or its nanoparticles (AgNPs), both of which have been studied for their antimicrobial effect. In this study, we compared the biological effects of AgNP coatings with and without a plasma-polymerized hexamethyldisiloxane (ppHMDSO) protective film to smooth silver or copper coatings under three ambient conditions that mimic their potential medical use (dry or wet environments and an environment simulating the human body).

View Article and Find Full Text PDF

The increasing risk of antibiotic failure in the treatment of infections is largely related to the production of a wide range of virulence factors. The use of non-thermal plasma (NTP) is a promising alternative to antimicrobial treatment. Nevertheless, there is still a lack of knowledge about the effects of NTP on the virulence factors production.

View Article and Find Full Text PDF

Recently, much attention has been paid to the use of low-temperature plasmas and plasma-activated water (PAW) in various areas of biological research. In addition to its use in medicine, especially for low-temperature disinfection and sterilization, a number of works using plasma in various fields of agriculture have already appeared. While direct plasma action involves the effects of many highly reactive species with short lifetimes, the use of PAW involves the action of only long-lived particles.

View Article and Find Full Text PDF

The current pandemic resulted in a rapidly increasing demand for personal protective equipment (PPE) initially leading to severe shortages of these items. Hence, during an unexpected and fast virus spread, the possibility of reusing highly efficient protective equipment could provide a viable solution for keeping both healthcare professionals and the general public equipped and protected. This requires an efficient decontamination technique that preserves functionality of the sensitive materials used for PPE production.

View Article and Find Full Text PDF

A non-thermal plasma (NTP) is a promising tool against the development of bacterial, viral, and fungal diseases. The recently revealed development of microbial resistance to traditional drugs has increased interest in the use of NTPs. We have studied and compared the physical and microbicidal properties of two types of NTP sources based on a cometary discharge in the point-to-point electrode configuration and a corona discharge in the point-to-ring electrode configuration.

View Article and Find Full Text PDF

Cereals, an important food for humans and animals, may carry microbial contamination undesirable to the consumer or to the next generation of plants. Currently, non-thermal plasma (NTP) is often considered a new and safe microbicidal agent without or with very low adverse side effects. NTP is a partially or fully ionized gas at room temperature, typically generated by various electric discharges and rich in reactive particles.

View Article and Find Full Text PDF

The acronym ESKAPE refers to a group of bacteria consisting of , , , , , and spp. They are important in human medicine as pathogens that show increasing resistance to commonly used antibiotics; thus, the search for new effective bactericidal agents is still topical. One of the possible alternatives is the use of non-thermal plasma (NTP), a partially ionized gas with the energy stored particularly in the free electrons, which has antimicrobial and anti-biofilm effects.

View Article and Find Full Text PDF

Water suspensions of cysts of a pathogenic clinical isolate of sp. were prepared, and the cysts were inactivated either in suspension or placed on the surface of contact lenses by the non-thermal plasma produced by the DC corona transient spark discharge. The efficacy of this treatment was determined by cultivation and the presence of vegetative trophozoites indicating non-inactivated cysts.

View Article and Find Full Text PDF

Following our previous study of the therapy of onychomycosis by non-thermal plasma (NTP) and nail hygiene and to obtain some prerequisite data of dermatophytes sensitivity, the dynamics of those inactivation by NTP plasma was monitored for various strains of , , , and . Three strains of each species on agar plates were exposed with plasma produced by a DC corona discharge in the point-to-ring arrangement in various time intervals. Although all strains were sufficiently sensitive to plasma action, significant differences were observed in their sensitivity and inactivation dynamics.

View Article and Find Full Text PDF

The legumes ( family) are the second most important agricultural crop, both in terms of harvested area and total production. They are an important source of vegetable proteins and oils for human consumption. Non-thermal plasma (NTP) treatment is a new and effective method in surface microbial inactivation and seed stimulation useable in the agricultural and food industries.

View Article and Find Full Text PDF

Mycotoxins cause adverse effects on human health. Therefore, it is of the utmost importance to confront them, particularly in agriculture and food systems. Non-thermal plasma, electron beam radiation, and pulsed light are possible novel non-thermal technologies offering promising results in degrading mycotoxins with potential for practical applications.

View Article and Find Full Text PDF

The inactivation of cercariae and miracidia was achieved by exposure to plasma produced by the positive, negative, and axial negative corona discharges. The positive discharge appeared as the most effective, causing the death of cercariae and miracidia within 2-3 min of exposure. The negative discharge was less effective, and the axial discharge was ineffective.

View Article and Find Full Text PDF

A critical lack of personal protective equipment has occurred during the COVID-19 pandemic. Polylactic acid (PLA), a polyester made from renewable natural resources, can be exploited for 3D printing of protective face masks using the Fused Deposition Modelling technique. Since the possible high porosity of this material raised questions regarding its suitability for protection against viruses, we have investigated its microstructure using scanning electron microscopy and aerosol generator and photometer certified as the test system according to the standards EN 143 and EN 149.

View Article and Find Full Text PDF

Onychomycosis is one of the most common nail disorders. Its current treatment is not satisfactorily effective and often causes adverse side effects. This study aims to determine the optimal conditions for non-thermal plasma (NTP) inactivation of the most common dermatophytes in vitro and to apply it in patient`s therapy.

View Article and Find Full Text PDF

Non-thermal plasma (NTP), generated at atmospheric pressure by DC cometary discharge with a metallic grid, and antibiotics (gentamicin-GTM, ceftazidime-CFZ and polymyxin B-PMB), either alone or in combination, were used to eradicate the mature biofilm of Pseudomonas aeruginosa formed on Ti-6Al-4V alloy. Our aim was to find the conditions for NTP pre-treatment capable of enhancing the action of the antibiotics and thus reducing their effective concentrations. The NTP treatment increased the efficacy of relatively low concentrations of antibiotics.

View Article and Find Full Text PDF

The influence of non-thermal plasma (NTP) treatment on the prevention of antibiotic resistance of microbial biofilms was studied. Staphylococcus epidermidis and Escherichia coli bacteria and a yeast Candida albicans, grown on the surface of Ti-6Al-4V alloy used in the manufacture of prosthetic implants, were employed. Their biofilms were exposed to NTP produced by DC cometary discharge and subsequently treated with antibiotics commonly used for the treatment of infections caused by them: erythromycin (ERY), polymyxin B (PMB), or amphotericin B (AMB), respectively.

View Article and Find Full Text PDF

The overview provides basic information on non-thermal plasma, its properties, and methods of its generation. It gives examples of its use in the inactivation of bacteria including biofilms, fungi, and prions. Related applications in human medicine, namely in wound healing, antitumor therapy, dental medicine, and dermatomycosis therapy are also mentioned.

View Article and Find Full Text PDF

Traditionally, two classes of silicon nanocrystals (SiNCs) are recognized with respect to their light-emission properties. These are usually referred to as the "red" and the "blue" emitting SiNCs, based on the spectral region in which the larger part of their luminescence is concentrated. The origin of the "blue" luminescence is still disputed and is very probably different in different systems.

View Article and Find Full Text PDF

In recent decades, the non-thermal plasma, i.e. partially or completely ionized gas produced by electric discharges at ambient temperature, has become of interest for its microbiocidal properties with potential of use in the food industry or medicine.

View Article and Find Full Text PDF