Reverse genetic systems are powerful tools in molecular virology that allow the generation of infectious recombinant virus and the manipulation of viral genomes. Reverse genetic systems enable the incorporation of reporter genes, facilitating many virological assays, including high-throughput screening. Additionally, reverse genetic systems can be used to introduce targeted mutations into the viral genome, allowing investigations of viral genetic elements and protein functions in virus pathogenesis and biology.
View Article and Find Full Text PDFAdvancement of vaccine candidates that demonstrate protective efficacy in screening studies necessitates detailed safety and immunogenicity investigations in pre-clinical models. A non-spreading Crimean-Congo hemorrhagic fever virus (CCHFV) viral replicon particle (VRP) vaccine was developed for single-dose administration to protect against disease. To date, several studies have supported safety, immunogenicity, and efficacy of the CCHF VRP in multiple highly sensitive murine models of lethal disease, but the VRP had yet to be evaluated in large animals.
View Article and Find Full Text PDFImmunizing mice with Crimean-Congo hemorrhagic fever virus (CCHFV) nucleoprotein (NP), glycoprotein precursor (GPC), or with the GP38 domain of GPC, can be protective when the proteins are delivered with viral vectors or as a DNA or RNA vaccine. Subunit vaccines are a safe and cost-effective alternative to some vaccine platforms, but Gc and Gn glycoprotein subunit vaccines for CCHFV fail to protect despite eliciting high levels of neutralizing antibodies. Here, we investigated humoral and cellular immune responses and the protective efficacy of recombinant NP, GP38, and GP38 forms (GP85 and GP160) associated with the highly glycosylated mucin-like (MLD) domain, as well as the NP + GP38 combination.
View Article and Find Full Text PDFCurrently, no effective vaccine to prevent human immunodeficiency virus (HIV) infection is available, and various platforms are being examined. The vesicular stomatitis virus (VSV) vaccine vehicle can induce robust humoral and cell-mediated immune responses, making it a suitable candidate for the development of an HIV vaccine. Here, we analyze the protective immunological impacts of recombinant VSV vaccine vectors that express chimeric HIV Envelope proteins (Env) in rhesus macaques.
View Article and Find Full Text PDFNipah virus (NiV) is a highly pathogenic paramyxovirus. The Syrian hamster model recapitulates key features of human NiV disease and is a critical tool for evaluating antivirals and vaccines. Here we describe longitudinal humoral immune responses in NiV-infected Syrian hamsters.
View Article and Find Full Text PDFEbola disease (EBOD) is a public health threat with a high case fatality rate. Most EBOD outbreaks have occurred in remote locations, but the 2013-2016 Western Africa outbreak demonstrated how devastating EBOD can be when it reaches an urban population. Here, the 2022 Sudan virus disease (SVD) outbreak in Mubende District, Uganda, is summarized, and the genetic relatedness of the new variant is evaluated.
View Article and Find Full Text PDFCrimean-Congo hemorrhagic fever virus (CCHFV; family ) is a tick-borne pathogen that frequently causes lethal disease in humans. CCHFV has a wide geographic distribution, and cases have been reported in Africa, Asia, the Middle East, and Europe. Availability of a safe and efficacious vaccine is critical for restricting outbreaks and preventing disease in endemic countries.
View Article and Find Full Text PDFDespite the human immunodeficiency virus (HIV) pandemic continuing worldwide for 40 years, no vaccine to combat the disease has been licenced for use in at risk populations. Here, we describe a novel recombinant vesicular stomatitis virus (rVSV) vector vaccine expressing modified HIV envelope glycoproteins and Ebola virus glycoprotein. Three heterologous immunizations successfully prevented infection by a different clade SHIV in 60% of non-human primates (NHPs).
View Article and Find Full Text PDFNipah virus (NiV) causes a highly lethal disease in humans who present with acute respiratory or neurological signs. No vaccines against NiV have been approved to date. Here, we report on the clinical impact of a novel NiV-derived nonspreading replicon particle lacking the fusion (F) protein gene (NiVΔF) as a vaccine in three small animal models of disease.
View Article and Find Full Text PDFChikungunya virus (CHIKV) is a reemerging alphavirus. Since 2005, it has infected millions of people during outbreaks in Africa, Asia, and South/Central America. CHIKV replication depends on host cell factors at many levels and is expected to have a profound effect on cellular physiology.
View Article and Find Full Text PDFDevelopment of lethal models of Ebola virus disease has been achieved by the serial passage of virus isolates from human cases in mice and guinea pigs. Use of mice infected with non-adapted virus has been limited due to the absence of overt clinical disease. In recent years, newly recognized sequelae identified in human cases has highlighted the importance of continued investigations of non-lethal infection both in humans and animal models.
View Article and Find Full Text PDFBackground: The COVID-19 pandemic resulted in a worldwide shortage of N95 respirators, prompting the development of decontamination methods to enable limited reuse. Countries lacking reliable supply chains would also benefit from the ability to safely reuse PPE. Methylene blue (MB) is a light-activated dye with demonstrated antimicrobial activity used to sterilize blood plasma.
View Article and Find Full Text PDFLassa fever (LF) is endemic to broad regions of West Africa. Infection with Lassa virus (LASV), the etiologic agent of LF, results in a spectrum of clinical signs in humans, including severe and lethal hemorrhagic disease. Person-to-person transmission occurs through direct contact with body fluids or contaminated bedding and clothing.
View Article and Find Full Text PDFDefective interfering particles (DIs) contain a considerably smaller genome than the parental virus but retain replication competency. As DIs can directly or indirectly alter propagation kinetics of the parental virus, they offer a novel approach to antiviral therapy, capitalizing on knowledge from natural infection. However, efforts to translate inhibition to screening models remain limited.
View Article and Find Full Text PDFLassa virus (LASV) causes mild to severe hemorrhagic fever disease in humans. Strain 13/N guinea pigs are highly susceptible to infection with LASV strain Josiah (clade IV), providing a critical model system for therapeutics and vaccine development. To develop additional models of disease, we detail the clinical course in guinea pigs infected with 5 geographically and genetically diverse LASV strains.
View Article and Find Full Text PDFPost-translational modification of host and viral proteins by ubiquitin and ubiquitin-like proteins plays a key role in a host's ability to mount an effective immune response. Avian species lack a ubiquitin-like protein found in mammals and other non-avian reptiles; interferon stimulated gene product 15 (ISG15). ISG15 serves as a messenger molecule and can be conjugated to both host and viral proteins leading them to be stabilized, degraded, or sequestered.
View Article and Find Full Text PDFCrimean-Congo hemorrhagic fever virus (CCHFV) causes mild to severe and fatal disease in humans. Person-to-person transmission is common, necessitating the availability of rapidly deliverable therapeutic and prophylactic interventions to mitigate CCHFV spread. Previously, we showed complete protection using one dose of a viral replicon particle (VRP) vaccine administered 28 days before CCHFV challenge.
View Article and Find Full Text PDFObjective: The coronavirus disease 2019 (COVID-19) pandemic has resulted in shortages of personal protective equipment (PPE), underscoring the urgent need for simple, efficient, and inexpensive methods to decontaminate masks and respirators exposed to severe acute respiratory coronavirus virus 2 (SARS-CoV-2). We hypothesized that methylene blue (MB) photochemical treatment, which has various clinical applications, could decontaminate PPE contaminated with coronavirus.
Design: The 2 arms of the study included (1) PPE inoculation with coronaviruses followed by MB with light (MBL) decontamination treatment and (2) PPE treatment with MBL for 5 cycles of decontamination to determine maintenance of PPE performance.
Crimean-Congo hemorrhagic fever (CCHF) is the most widely distributed tick-borne viral infection in the world. Strikingly, reported mortality rates for CCHF are extremely variable, ranging from 5% to 80% (Whitehouse, 2004). CCHF virus (CCHFV, ) exhibits extensive genomic sequence diversity across strains (Deyde et al.
View Article and Find Full Text PDFInterferon (IFN)-stimulated gene product 15 (ISG15) is a ubiquitin-like protein critical for the control of microbial infections. ISG15 appears to serve a wide variety of functions, which regulate multiple cellular responses contributing to the development of an antiviral state. ISG15 is a versatile molecule directly modulating both host and virus protein function which regulate many signaling pathways, including its own synthesis.
View Article and Find Full Text PDFCrimean-Congo hemorrhagic fever virus (CCHFV) is a tri-segmented, tick-borne nairovirus that causes disease of ranging severity in humans. The CCHFV M segment encodes a complex glycoprotein precursor (GPC) that undergoes extensive endoproteolytic cleavage, giving rise to two structural proteins (Gn and Gc) required for virus attachment and entry, and to multiple non-structural proteins (NSm, GP160, GP85, and GP38). The functions of these non-structural proteins remain largely unclear.
View Article and Find Full Text PDF