Publications by authors named "Schnorr J"

Article Synopsis
  • The study examines how low oxygen levels (hypoxia) and tumor metabolism influence the polarization of macrophages, specifically promoting their M2 subtype, which is linked to tumor growth and immune evasion.
  • Under experimental conditions, hypoxia was found to decrease the extracellular pH more significantly than normoxia, and this was associated with a marked M2 polarization of macrophages when exposed to tumor-conditioned media.
  • The research suggests that targeting the hypoxic environment of liver tumors might help to enhance immune responses, with particular metabolites like lactate and 2-amino-butanoic acid being potential therapeutic targets.
View Article and Find Full Text PDF

Citrate-coated electrostatically stabilized very small superparamagnetic iron oxide particles (VSOPs) have been successfully tested as magnetic resonance angiography (MRA) contrast agents and are promising tools for molecular imaging of atherosclerosis. Their repeated use in the background of pre-existing hyperlipidemia and atherosclerosis has not yet been studied. This study aimed to investigate the effect of multiple intravenous injections of VSOPs in atherosclerotic mice.

View Article and Find Full Text PDF

Patients with chronic kidney disease (CKD) have a high prevalence of hyperphosphatemia, where uremic toxins like inorganic phosphate (Pi) induce a cardiovascular remodeling. Related disorders like atherosclerosis bear the risk of increased morbidity and mortality. We previously found that Pi stimulates the synthesis and sulfation of the negatively charged glycosaminoglycans (GAGs) heparan sulfate and chondroitin sulfate in vascular smooth muscle cells (VSMC).

View Article and Find Full Text PDF

Uremic toxins exert pathophysiological effects on cells and tissues, such as the generation of a pro-calcifying subtype of exosome-like extracellular vesicles (EVs) in vascular cells. Little is known about the effects of the toxins on the surface structure of EVs. Thus, we studied the effects of uremic toxins on the abundance of sulfated glycosaminoglycans (GAGs) in EVs, and the implications for binding of ligands such as very small superparamagnetic iron oxide particles (VSOPs) which could be of relevance for radiological EV-imaging.

View Article and Find Full Text PDF

Objective: To compare the rate of blood pressure ascertainment within 10 days of postpartum discharge among individuals with hypertensive disorders of pregnancy randomized either to in-office blood pressure assessment or at-home monitoring.

Methods: This was a multisite randomized controlled trial of postpartum patients diagnosed with a hypertensive disorder of pregnancy before discharge between April 2021 and September 2021 and was performed at two academic training institutions. Patients were randomized to either an in-office blood pressure check or remote monitoring through a web-enabled smartphone platform.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is characterized by structural changes, such as tubular atrophy, renal fibrosis, and glomerulosclerosis, all of which affect the viscoelastic properties of biological tissues. However, detection of renal viscoelasticity changes because diagnostic markers by in vivo elastography lack histopathological validation through animal models. Therefore, we investigated in vivo multiparametric magnetic resonance imaging (mp-MRI), including multifrequency magnetic resonance elastography-based tomoelastography, in the kidneys of 10 rats with adenine-induced CKD and eight healthy controls.

View Article and Find Full Text PDF

Objective: To study the clinical use of elagolix in ovarian stimulation and its effect on premature ovulation in a cohort of women undergoing oocyte donation.

Design: A prospective cohort study with the use of historical controls.

Setting: A private reproductive endocrinology and infertility clinic.

View Article and Find Full Text PDF

Inflammatory bowel diseases (IBD) comprise mainly ulcerative colitis (UC) and Crohn´s disease (CD). Both forms present with a chronic inflammation of the (gastro) intestinal tract, which induces excessive changes in the composition of the associated extracellular matrix (ECM). In UC, the inflammation is limited to the colon, whereas it can occur throughout the entire gastrointestinal tract in CD.

View Article and Find Full Text PDF

Balloon angioplasty and stent implantation are standard techniques to reopen stenotic vessels. Often, balloons or stents coated with cytostatic drugs are used to prevent re-occlusion of the arteries. Resveratrol, which is known for its numerous beneficial effects on cardiovascular health, is used as an antioxidant additive on paclitaxel-coated balloon catheters.

View Article and Find Full Text PDF

Neuroinflammatory processes occurring during multiple sclerosis cause disseminated softening of brain tissue, as quantified by magnetic resonance elastography (MRE). However, inflammation-mediated tissue alterations underlying the mechanical integrity of the brain remain unclear. We previously showed that blood-brain barrier (BBB) disruption visualized by MRI using gadolinium-based contrast agent (GBCA) does not correlate with tissue softening in active experimental autoimmune encephalomyelitis (EAE).

View Article and Find Full Text PDF

For the preclinical development of magnetic particle imaging (MPI) in general, and the exploration of possible new clinical applications of MPI in particular, tailored MPI tracers with surface properties optimized for the intended use are needed. Here we present the synthesis of magnetic multicore particles (MCPs) modified with polyethylene glycol (PEG) for use as blood pool MPI tracers. To achieve the stealth effect the carboxylic groups of the parent MCP were activated and coupled with pegylated amines (mPEG-amines) with different PEG-chain lengths from 2 to 20 kDa.

View Article and Find Full Text PDF

Extracellular vesicles (EV) function as messengers between endothelial cells (EC) and vascular smooth muscle cells (VSMC). Since chronic kidney disease (CKD) increases the risk for vascular calcifications, we investigated whether EV derived from uraemic milieu-stimulated EC and derived from uraemic rats impact the osteogenic transdifferentiation/calcification of VSMC. For that purpose, human EC were treated with urea and indoxyl sulphate or left untreated.

View Article and Find Full Text PDF

Complex iron nanoparticle-based drugs are one of the oldest and most frequently administered classes of nanomedicines. In the US, there are seven FDA-approved iron nanoparticle reference drug products, of which one also has an approved generic drug product (i.e.

View Article and Find Full Text PDF

Purpose: Contrast-enhanced magnetic resonance imaging (MRI) has the potential to replace angiographic evaluation of atherosclerosis. While studies have investigated contrast agent (CA) uptake in atherosclerotic plaques, exact CA spatial distribution on a microscale is elusive. The purpose of this study was to investigate the microdistribution of gadolinium (Gd)- and iron (Fe) oxide-based CA in atherosclerotic plaques of New Zealand White rabbits.

View Article and Find Full Text PDF

Purpose: To evaluate feasibility, embolization success, biodegradability, reperfusion, and biocompatibility of biodegradable microspheres (MS) made from polydioxanone (PDO) for transcatheter arterial embolization.

Materials And Methods: Unilateral selective renal embolization of a segmental artery was performed in 16 New Zealand White rabbits with PDO-MS (100-150 μm and 90-315 μm). Animals were randomly assigned to different observation periods and underwent control digital subtraction angiography (DSA) and MR imaging immediately (n = 3), 1 week (n = 2), 4 weeks (n = 2), 8 weeks (n = 2), 12 weeks (n = 5), and 16 weeks (n = 2) after embolization.

View Article and Find Full Text PDF

Magnetic Particle Imaging (MPI) is a new imaging modality, which maps the distribution of magnetic nanoparticles (MNP) in 3D with high temporal resolution. It thus may be suited for cardiovascular imaging. Its sensitivity and spatial resolution critically depend on the magnetic properties of MNP.

View Article and Find Full Text PDF

Non-invasive quantification of functional parameters of the cardiovascular system, in particular the heart, remains very challenging with current imaging techniques. This aspect is mainly due to the fact, that the spatio-temporal resolution of current imaging methods, such as Magnetic Resonance Imaging (MRI) or Positron Emission Tomography (PET), does not offer the desired data repetition rates in the context of real-time data acquisition and thus, can cause artifacts and misinterpretations in accelerated data acquisition approaches. We present a fast non-invasive and quantitative dual-modal in situ cardiovascular assessment using a hybrid imaging system which combines the new imaging modality Magnetic Particle Imaging (MPI) and MRI.

View Article and Find Full Text PDF

Abdominal aortic aneurysms (AAAs) are currently one of the leading causes of death in developed countries. Inflammation is crucial in the disease progression, having a substantial impact on various determinants in AAAs development. Magnetic particle imaging (MPI) is an innovative imaging modality, enabling the highly sensitive detection of magnetic nanoparticles (MNPs), suitable as surrogate marker for molecular targeting of vascular inflammation.

View Article and Find Full Text PDF

Purpose: To assess feasibility, embolization success, biodegradability, reperfusion, biocompatibility and in vivo visibility of novel temporary microspheres (MS) for transcatheter arterial embolization.

Material And Methods: In 9 New Zealand white rabbits unilateral superselective embolization of the lower kidney pole was performed with biodegradable MS made of polydioxanone (PDO) (size range 90-300 and 200-500 µm) impregnated with super-paramagnetic iron oxide (SPIO). Magnetic resonance imaging (MRI) was performed post-interventionally to assess in vivo visibility.

View Article and Find Full Text PDF

Magnetic particle imaging (MPI) is a new imaging technique that detects the spatial distribution of magnetic nanoparticles (MNP) with the option of high temporal resolution. MPI relies on particular MNP as tracers with tailored characteristics for improvement of sensitivity and image resolution. For this reason, we developed optimized multicore particles (MCP 3) made by coprecipitation via synthesis of green rust and subsequent oxidation to iron oxide cores consisting of a magnetite/maghemite mixed phase.

View Article and Find Full Text PDF

Angioplasty aiming at vascular dilatation causes endothelial denudation and induces complex inflammatory responses that affect vascular healing, including delayed reendothelialization and excessive neointima proliferation. Resveratrol is known for multiple beneficial effects on the vessel wall after systemic treatment or sustained release from a stent. It is also used as an additive on drug-coated balloon catheters (DCB).

View Article and Find Full Text PDF

We investigated the biotransformation of very small superparamagnetic iron oxide nanoparticles (VSOP) in atherosclerotic LDLR mice. Transmission electron microscopy revealed an uptake of VSOP not only by macrophages but also by endothelial cells in liver, spleen, and atherosclerotic lesions and their accumulation in the lysosomal compartment. Using magnetic particle spectroscopy (MPS), we show that the majority of VSOP's superparamagnetic iron was degraded within 28 days.

View Article and Find Full Text PDF

Aims: To evaluate the feasibility, safety and efficacy of renal sympathetic denervation via endoluminal transaortic periarterial ethanol injection.

Methods And Results: In 11 normotensive pigs transaortic puncture was performed with a 90-cm 21G needle with subsequent unilateral ethanol injection to the periarterial space. Needle placement was achieved using a 7F steerable sheath fluoroscopically positioned slightly above the renal artery origin.

View Article and Find Full Text PDF

Although parenteral iron products have been established to medicinal use decades before, their structure and pharmacokinetic properties are not fully characterized yet. With its' second reflection paper on intravenous iron-based nano-colloidal products (EMA/CHMP/SWP/620008/2012) the European Medicine Agency provided an extensive catalogue of methods for quality, non-clinical and pharmacokinetic studies for the comparison of nano-sized iron products to an originator (EMA, 2015). For iron distribution studies, the reflection paper assumed the use of rodents.

View Article and Find Full Text PDF

Synthesis of novel magnetic multicore particles (MCP) in the nano range, involves alkaline precipitation of iron(II) chloride in the presence of atmospheric oxygen. This step yields green rust, which is oxidized to obtain magnetic nanoparticles, which probably consist of a magnetite/maghemite mixed-phase. Final growth and annealing at 90°C in the presence of a large excess of carboxymethyl dextran gives MCP very promising magnetic properties for magnetic particle imaging (MPI), an emerging medical imaging modality, and magnetic resonance imaging (MRI).

View Article and Find Full Text PDF