Publications by authors named "Schnetter E"

The gravitational waves emitted by a perturbed black hole ringing down are well described by damped sinusoids, whose frequencies are those of quasinormal modes. Typically, first-order black hole perturbation theory is used to calculate these frequencies. Recently, it was shown that second-order effects are necessary in binary black hole merger simulations to model the gravitational-wave signal observed by a distant observer.

View Article and Find Full Text PDF

Background: IMI2-PainCare-BioPain-RCT2 is one of four similarly designed clinical studies aiming at profiling a set of functional biomarkers of drug effects on specific compartments of the nociceptive system that could serve to accelerate the future development of analgesics. IMI2-PainCare-BioPain-RCT2 will focus on human spinal cord and brainstem activity using biomarkers derived from non-invasive neurophysiological measurements.

Methods: This is a multisite, single-dose, double-blind, randomized, placebo-controlled, 4-period, 4-way crossover, pharmacodynamic (PD) and pharmacokinetic (PK) study in healthy subjects.

View Article and Find Full Text PDF

Background: Few new drugs have been developed for chronic pain. Drug development is challenged by uncertainty about whether the drug engages the human target sufficiently to have a meaningful pharmacodynamic effect. IMI2-PainCare-BioPain-RCT1 is one of four similarly designed studies that aim to link different functional biomarkers of drug effects on the nociceptive system that could serve to accelerate the future development of analgesics.

View Article and Find Full Text PDF

In a binary black hole merger, it is known that the inspiral portion of the waveform corresponds to two distinct horizons orbiting each other and that the merger and ringdown signals correspond to the final horizon being formed and settling down to equilibrium. However, we still lack a detailed understanding of the relation between the horizon geometry in these three regimes and the observed waveform. Here we show that the well-known inspiral chirp waveform has a clear counterpart on black hole horizons, namely, the shear of the outgoing null rays at the horizon.

View Article and Find Full Text PDF

We find strong numerical evidence for a new phenomenon in a binary black hole spacetime, namely, the merger of marginally outer trapped surfaces (MOTSs). By simulating the head-on collision of two nonspinning unequal mass black holes, we observe that the MOTS associated with the final black hole merges with the two initially disjoint surfaces corresponding to the two initial black holes. This yields a connected sequence of MOTSs interpolating between the initial and final state all the way through the nonlinear binary black hole merger process.

View Article and Find Full Text PDF

Magnetohydrodynamic turbulence is important in many high-energy astrophysical systems, where instabilities can amplify the local magnetic field over very short timescales. Specifically, the magnetorotational instability and dynamo action have been suggested as a mechanism for the growth of magnetar-strength magnetic fields (of 10(15) gauss and above) and for powering the explosion of a rotating massive star. Such stars are candidate progenitors of type Ic-bl hypernovae, which make up all supernovae that are connected to long γ-ray bursts.

View Article and Find Full Text PDF

We study the collapse of rapidly rotating supermassive stars that may have formed in the early Universe. By self-consistently simulating the dynamics from the onset of collapse using three-dimensional general-relativistic hydrodynamics with fully dynamical spacetime evolution, we show that seed perturbations in the progenitor can lead to the formation of a system of two high-spin supermassive black holes, which inspiral and merge under the emission of powerful gravitational radiation that could be observed at redshifts z is approximately equal or > to 10 with the DECIGO or Big Bang Observer gravitational-wave observatories, assuming supermassive stars in the mass range 10(4)-10(6)M[symbol: see text]. The remnant is rapidly spinning with dimensionless spin a*=0.

View Article and Find Full Text PDF

We perform 3+1 general relativistic simulations of rotating core collapse in the context of the collapsar model for long gamma-ray bursts. We employ a realistic progenitor, rotation based on results of stellar evolution calculations, and a simplified equation of state. Our simulations track self-consistently collapse, bounce, the postbounce phase, black hole formation, and the subsequent early hyperaccretion phase.

View Article and Find Full Text PDF

The final evolution of a binary-black-hole system gives rise to a recoil velocity if an asymmetry is present in the emitted gravitational radiation. Measurements of this effect for nonspinning binaries with unequal masses have pointed out that kick velocities approximately 175 km/s can be reached for a mass ratio approximately 0.36.

View Article and Find Full Text PDF

We present 2D and 3D simulations of the collapse of rotating stellar iron cores in general relativity employing a nuclear equation of state and an approximate treatment of deleptonization. We compare fully general relativistic and conformally flat evolutions and find that the latter treatment is sufficiently accurate for the core-collapse supernova problem. We focus on gravitational wave (GW) emission from rotating collapse, bounce, and early postbounce phases.

View Article and Find Full Text PDF

We investigate new paths to supermassive black hole formation by considering the general relativistic evolution of a differentially rotating polytrope with a toroidal shape. We find that this polytrope is unstable to nonaxisymmetric modes, which leads to a fragmentation into self-gravitating, collapsing components. In the case of one such fragment, we apply a simplified adaptive mesh refinement technique to follow the evolution to the formation of an apparent horizon centered on the fragment.

View Article and Find Full Text PDF

We present a detailed analysis of binary black hole evolutions in the last orbit and demonstrate consistent and convergent results for the trajectories of the individual bodies. The gauge choice can significantly affect the overall accuracy of the evolution. It is possible to reconcile certain gauge-dependent discrepancies by examining the convergence limit.

View Article and Find Full Text PDF

We present the first three-dimensional (3D) calculations of the gravitational-wave emission in the collapse of uniformly rotating stars to black holes. The initial models are polytropes which are dynamically unstable and near the mass-shedding limit. The waveforms have been extracted using a gauge-invariant approach and reflect the properties of both the initial stellar models and of newly produced black holes, being in good qualitative agreement with those computed in previous 2D simulations.

View Article and Find Full Text PDF

We present the first simulations of non-head-on (grazing) collisions of binary black holes in which the singularities are excised from the simulation. Initially equal mass m black holes (spinning or not) are separated by approximately 10m and with impact parameter approximately 2m. Evolutions to t approximately 35m are obtained where two separate horizons are present for t approximately 3.

View Article and Find Full Text PDF