Publications by authors named "Schneijdenberg C"

The search for new functional soft materials with precise and reconfigurable structures at the nano and meso-scale is a major challenge as well as objective of the current science. Patchy colloids of different shapes and functionalities are considered important new building blocks of a bottom-up approach towards rational design of new soft materials largely governed by anisotropic interactions. Herein, we investigate the self-assembly, growth of hierarchical microstructures and aging dynamics of 2D nano-platelets of two different aspect ratios (Laponite ~25 and Montmorillonite ~250) which form gels with different porosity that is achieved by tuning their mixing ratios.

View Article and Find Full Text PDF

Since the recent boost in the usage of electron microscopy in life-science research, there is a great need for new methods. Recently minimal resin embedding methods have been successfully introduced in the sample preparation for focused-ion beam scanning electron microscopy (FIB-SEM). In these methods several possibilities are given to remove as much resin as possible from the surface of cultured cells or multicellular organisms.

View Article and Find Full Text PDF

Emulsions stabilized by solid particles, called Pickering emulsions, offer promising applications in drug delivery, cosmetics, food science and the manufacturing of porous materials. This potential stems from their high stability against coalescence and 'surfactant-free' nature. Generally, Pickering emulsions require that the solid particles are wetted by both phases and as a result, the adsorption free energy is often large with respect to the thermal energy (kBT).

View Article and Find Full Text PDF

Recently a number of new approaches have been presented with the intention to produce electron beam transparent cryo-sections (lamellas in FIB-SEM terminology) from hydrated vitreously frozen cryo samples with a Focused Ion Beam (FIB) system, suitable for cryo-Transmission Electron Microscopy (cryo-TEM). As the workflow is still challenging and time consuming, it is important to be able to determine the integrity and suitability (cells vs. no cells; vitreous vs.

View Article and Find Full Text PDF

Naturally deformed ice contains subgrains with characteristic geometries that have recently been identified in etched surfaces using high-resolution light microscopy (LM). The probable slip systems responsible for these subgrain boundary types can be determined using electron backscattered diffraction (EBSD), providing the etch features imaged with reflected LM can be retained during EBSD data acquisition in a scanning electron microscope (SEM). Retention of the etch features requires that the ice surface is stable.

View Article and Find Full Text PDF

There has been a long standing desire to produce thick (up to 500 nm) cryo-sections of fully hydrated cells and tissue for high-resolution analysis in their natural state by cryo-transmission electron microscopy. Here, we present a method that can successfully produce sections (lamellas in FIB-SEM terminology) of fully hydrated, unstained cells from high-pressure frozen samples by focused ion beam (FIB) milling. The samples are therefore placed in thin copper tubes and vitrified by high-pressure freezing.

View Article and Find Full Text PDF

Atherogenesis is a pathological condition in which changes in the ultrastructure and in the localization of proteins occur within the vasculature during all stages of the disease. To gain insight in those changes, high-resolution imaging is necessary. Some of these changes will only be present in a small number of cells, positioned in a 'sea' of non-affected cells.

View Article and Find Full Text PDF

Tomography in a focused ion beam (FIB) scanning electron microscope (SEM) is a powerful method for the characterization of three-dimensional micro- and nanostructures. Although this technique can be routinely applied to conducting materials, FIB-SEM tomography of many insulators, including biological, geological and ceramic samples, is often more difficult because of charging effects that disturb the serial sectioning using the ion beam or the imaging using the electron beam. Here, we show that automatic tomography of biological and geological samples can be achieved by serial sectioning with a focused ion beam and block-face imaging using low-kV backscattered electrons.

View Article and Find Full Text PDF

Correlative microscopy is a powerful technique that combines the strengths of fluorescence microscopy and electron microscopy. The first enables rapid searching for regions of interest in large fields of view while the latter exhibits superior resolution over a narrow field of view. Routine use of correlative microscopy is seriously hampered by the cumbersome and elaborate experimental procedures.

View Article and Find Full Text PDF

Spectrin deficiency with increased erythrocyte osmotic fragility (OF) is a hallmark of hereditary spherocytosis, which is the most common congenital hemolytic anemia in humans of northern European ancestry. A radioimmunoassay revealed that erythrocyte spectrin concentration was 50-65% of normal in 5 adult Golden Retriever dogs, which had recovered from hemolytic anemia but whose OF had persistently remained increased. OF also was increased and spectrin concentration was decreased (60-73%) in 10 dogs of an apparently healthy family of 19 Golden Retrievers related to a proband.

View Article and Find Full Text PDF

Heart myocytes subjected to ischemia show a clustering of the sarcolemmal proteins. In the erythrocyte membrane, a system in which intramembranous particle (IMP) aggregation is extensively studied, it is found that an IMP aggregation can in principle only occur upon removal of the membrane skeleton of spectrin and actin by rather drastic experimental conditions. With regard to phospholipid composition and topology the sarcolemma and the erythrocyte membrane show large similarities and therefore it was proposed that a loss of the interaction of the IMPs and the cytoskeleton is also a prerequisite for the sarcolemmal IMP aggregation (Verkleij et al.

View Article and Find Full Text PDF

Rats treated orally for 21 days with aminocarnitine, an inhibitor of carnitine palmitoyltransferase-2 (CPT-2), do not show hypertrophy of the heart. This contrasts with the effects of carnitine palmitoyltransferase-1 (CPT-1) inhibitors, that, according to the literature, cause hypertrophy. As CPT-1 and CPT-2 are both required for the oxidation of long-chain fatty acids in mitochondria, it can be concluded that inhibition of fatty acid oxidation per se is not responsible for cell growth, but rather the accumulation of a metabolite, probably long-chain acylcoenzyme A.

View Article and Find Full Text PDF

A floating collagen matrix culture of neonatal rat heart myocardial cells shows rhythmic contractions which are dependent on localization of cells, cell density, and collagen concentration. The rhythmic contractions of the collagen matrix can be registered by a device scanning the optical density at the edge of the gel and have been observed over a temperature range from 9 degrees to 40 degrees C. The results of the present study underline the usefulness of myocardial cell populated collagen matrixes for studies on coherent contractions of heart cell cultures.

View Article and Find Full Text PDF

During Langendorff perfusion of rat heart with aminocarnitine, long-chain acylcarnitine (LCAC) accumulates in heart cells, from which it is excreted by the heart. The heart function remains intact during this process. The accumulation of LCAC can be inhibited by the simultaneous addition of an inhibitor of the outer membrane carnitine palmitoyl-coenzyme A transferase (CPT-1), indicating that aminocarnitine is a specific inhibitor of the inner membrane isoenzyme (CPT-2).

View Article and Find Full Text PDF

The only way for a tissue or organ to survive ischemia is by reperfusion or restoration of the blood flow. However, if the ischemic period is too long reperfusion leads to a Ca2+ overload of the myocardial cells and thereby to cell death. The question is; what are the key events during ischemia which cause this transition from reversible to irreversible injury.

View Article and Find Full Text PDF

The application of microwave irradiation at various steps in 'normal' EM procedures has been investigated. 1. The temperatures in various aqueous volumes were measured during microwave irradiation.

View Article and Find Full Text PDF