Background: Research is lacking on community and pharmacy-level factors that are associated with stocking buprenorphine. To address these gaps, this study applied a socio-ecological framework to estimate the association between community- and pharmacy-level factors and buprenorphine stocking among a sample of pharmacies in New York City.
Methods: A telephone survey recruitment strategy was used to administer surveys to 662 pharmacies on the New York City Naloxone Standing Order Pharmacy list in 2018.
Background: Research on socio-ecological factors that may impede or facilitate access to naloxone in pharmacies remains limited. This study investigated associations between socio-ecological factors, pharmacy participation in the naloxone cost assistance program (NCAP), pharmacy characteristics and having naloxone in stock among pharmacies in New York City.
Methods: Phone interviews were conducted with 662 pharmacies selected from the New York City Naloxone Standing Order List.
The influence of different additives on the oxygen reduction reaction/oxygen evolution reaction (ORR/OER) in magnesium-containing N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([BMP][TFSI]) on a glassy carbon electrode was investigated to gain a better understanding of the electrochemical processes in Mg-air batteries. 18-Crown-6 was used as a complexing agent for Mg ions to hinder the passivation caused by their reaction with ORR products such as superoxide and peroxide anions. Furthermore, borane dimethylamine complex (NBH) was used as a potential water-removing agent to inhibit electrode passivation by reacting with trace impurities of water.
View Article and Find Full Text PDFThe performance of structurally and chemically well-defined Ni-free and Ni-modified single-crystalline Co O (1 1 1) thin-film electrodes in the oxygen reduction and evolution reactions (ORR and OER) was investigated in a combined surface science and electrochemistry approach. Pure and Ni-modified Co O (1 1 1) film electrodes were prepared and characterized under ultrahigh-vacuum conditions by scanning tunneling microscopy and X-ray photoelectron spectroscopy. Both Ni decoration (by post-deposition of Ni) and Ni doping (by simultaneous vapor deposition of Ni, Co, and O ) induced distinct differences in the base cyclic voltammograms in 0.
View Article and Find Full Text PDFThe process of solid-electrolyte interphase (SEI) formation is systematically investigated along with its chemical composition on carbon electrodes in an ionic liquid-based, Li-containing electrolyte in a combined surface science and electrochemical model study using highly oriented pyrolytic graphite (HOPG) and binder-free graphite powder electrodes (Mage) as model systems. The chemical decomposition process is explored by deposition of Li on a pre-deposited multilayer film of 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMP][TFSI]) under ultrahigh vacuum conditions. Electrochemical SEI formation is induced by and monitored during potential cycling in [BMP][TFSI]+0.
View Article and Find Full Text PDFAiming at a detailed molecular understanding of the initial stage of the solid|electrolyte interphase (SEI) formation in Li-ion batteries, we have investigated the interaction of the battery-relevant ionic liquid (IL) 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMP][TFSI]) (solvent/electrolyte) and Li (Li ion shuttle) on well-defined Li-poor LiTiO(111) and Li-rich LiTiO(111) surfaces/electrodes in a combined surface science and electrochemical model study. X-ray photoelectron spectroscopy (XPS) measurements reveal that postdeposition of Li under ultrahigh vacuum (UHV) conditions on a Li-poor LiTiO(111) surface precovered with a molecularly adsorbed [BMP][TFSI] adlayer leads to little IL decomposition at 80 and 300 K. We assume that most of the Li diffuses through the IL adlayer and rapidly inserts into the LiTiO(111) bulk.
View Article and Find Full Text PDFAiming at a detailed understanding of the interaction between an ionic liquid, O, and electrodes in Mg-air batteries, we performed a combined differential electrochemical mass spectrometry and in situ infrared spectroscopy model study on the interaction between the ionic liquid (IL) 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (BMP-TFSI) and a gold film electrode in the presence and absence of O and Mg ions in the potential range relevant for the oxygen reduction reaction (ORR) and evolution reaction. Detailed information on the dynamic exchange of adsorbed ions, on the stability/decomposition of the ionic liquid, and on the activity/selectivity/reversibility of the ORR is derived from measurements performed under potentiodynamic and potentiostatic conditions. In neat BMP-TFSI, we find the dynamics of the potential induced exchange of adsorbed ions to depend significantly on the exchange direction.
View Article and Find Full Text PDFWe describe the construction and discuss the performance of a novel combined ultrahigh vacuum (UHV)-electrochemistry set-up, allowing the controlled preparation and structural characterization of complex nanostructured electrode surfaces by high resolution scanning tunnelling microscopy (STM) under UHV conditions on the one hand and, after electrode transfer under clean conditions, electrochemical measurements under continuous, controlled electrolyte mass transport conditions on the other. Electrochemical measurements can be coupled with online product detection, either using an additional collector electrode or by differential electrochemical mass spectrometry (DEMS). The potential of the set-up will be illustrated in two electrocatalytic reactions on complex, but structurally well-defined bimetallic electrode surfaces, O reduction on PtAg/Pt(111) monolayer surface alloys and bulk CO oxidation on Pt monolayer island modified Ru(0001) electrodes.
View Article and Find Full Text PDFAiming at a better understanding of the impact of reaction intermediates and reactive side products on electrocatalytic reactions under conditions characteristic for technical applications, i.e., at high reactant conversions, we have investigated the electrooxidation of methanol on a Pt film electrode in mixtures containing defined concentrations of the reaction intermediates formaldehyde or formic acid.
View Article and Find Full Text PDFThe role and impact of follow-up processes involving reactive side products in an electrocatalytic reaction is demonstrated for the electrooxidation of methanol at a Pt electrode. By using combined in situ infrared spectroscopy and online mass spectrometry and employing isotope-labeling techniques, it is shown that even small amounts of the incomplete oxidation products formaldehyde and formic acid have pronounced effects on the reaction.
View Article and Find Full Text PDFThe morphology and stability of well-ordered, nanostructured Au/TiO2(110) surfaces, prepared by deposition of Au loaded micelles on TiO2(110) substrates and subsequent oxidative removal of the polymer shell in an oxygen plasma, was investigated by noncontact AFM, SEM and XPS. The resulting arrays of Au nanoparticles (particle sizes 1-5 nm) form a nearly hexagonal pattern with well-defined interparticle distances and a narrow particle size distribution. Particle size and particle separation can be controlled independently by varying the Au loading and the block-copolymers in the micelle shell.
View Article and Find Full Text PDF