Tick-borne encephalitis virus (TBEV) is a single-stranded, positive-sense RNA virus in the family Flaviviridae that is endemic in parts of Europe and Asia and can cause meningitis or encephalitis. Due to the disease severity, TBEV requires handling under heightened biosafety measures. The establishment and validation of inactivation procedures is a prerequisite for downstream analyses and management of occupational exposure.
View Article and Find Full Text PDFThe MutS (MSH) and MutL (MLH) homologs are conserved proteins that function in mismatch repair (MMR) and meiosis. We examined mRNA and protein expression of hMLH3 compared to other human MSH and MLH in a panel of human tissues and the HeLa cell line. Quantitative PCR suggests that MSH and MLH transcripts are expressed ubiquitously.
View Article and Find Full Text PDFY-box-binding protein-1 (YB-1) is a multifunctional protein involved in the regulation of transcription, translation, and mRNA splicing. In recent years, several laboratories have demonstrated that YB-1 is directly involved in the cellular response to genotoxic stress. Importantly, YB-1 is increased in tumor cell lines resistant to cisplatin, and the level of nuclear expression of YB-1 is predictive of drug resistance and patient outcome in breast tumors, ovarian cancers, and synovial sarcomas.
View Article and Find Full Text PDFWe have previously demonstrated that the human heterodimeric meiosis-specific MutS homologs, hMSH4-hMSH5, bind uniquely to a Holliday Junction and its developmental progenitor (Snowden, T., Acharya, S., Butz, C.
View Article and Find Full Text PDFPrevious work by Sung and colleagues identified unusual salt requirements for hRAD51 strand exchange compared to RecA [S. Sigurdsson, K. Trujillo, B.
View Article and Find Full Text PDFhRAD51 lacks cooperative DNA-dependent ATPase activity and appears to function with 5-10-fold less Mg2+ compared to RecA. We have further explored the effect of Mg2+ on adenosine nucleotide binding, ATPase, and DNA strand exchange activities. hRAD51 was saturated with the poorly hydrolyzable analog of ATP, ATPgammaS, at approximately 0.
View Article and Find Full Text PDFPrevious studies from our laboratory indicated that expression of the MLH1 DNA mismatch repair (MMR) gene was necessary to restore cytotoxicity and an efficient G(2) arrest in HCT116 human colon cancer cells, as well as Mlh1(-/-) murine embryonic fibroblasts, after treatment with 5-fluoro-2'-deoxyuridine (FdUrd). Here, we show that an identical phenomenon occurred when expression of MSH2, the other major MMR gene, was restored in HEC59 human endometrial carcinoma cells or was present in adenovirus E1A-immortalized Msh2(+/+) (compared with isogenic Msh2(-/-)) murine embryonic stem cells. Because MMR status had little effect on cellular responses (i.
View Article and Find Full Text PDFThe assembly of bacterial RecA, and its human homolog hRAD51, into an operational ADP/ATP-regulated DNA-protein (nucleoprotein) filament is essential for homologous recombination repair (HRR). Yet hRAD51 lacks the coordinated ADP/ATP processing exhibited by RecA and is less efficient in HRR reactions in vitro. In this study, we demonstrate that hXRCC2, one of five other poorly understood non-redundant human mitotic RecA homologs (hRAD51B, hRAD51C, hRAD51D, hXRCC2, and hXRCC3), stimulates hRAD51 ATP processing.
View Article and Find Full Text PDFThe role of mismatch repair (MMR) in small-cell lung cancer (SCLC) is controversial, as the phenotype of a MMR-deficiency, microsatellite instability (MSI), has been reported to range from 0 to 76%. We studied the MMR pathway in a panel of 21 SCLC cell lines and observed a highly heterogeneous pattern of MMR gene expression. A significant correlation between the mRNA and protein levels was found.
View Article and Find Full Text PDFCold Spring Harb Symp Quant Biol
June 2003
Cancer Biol Ther
August 2003
The discovery that alterations of the DNA mismatch repair system (MMR) were linked to the common human cancer susceptibility syndrome hereditary nonpolyposis colon cancer (HNPCC) resulted in the declaration of a third class of genes involved in tumor development. In addition to oncogenes and tumor suppressors, alterations of DNA repair genes involved in maintaining genomic stability were found to be a clear cause of tum the level of the single nucleotides or chromosomes. This observation suggested that the establishment of genomic instability, termed the Mutator Phenotype, was an important aspect of tumor development.
View Article and Find Full Text PDFRAD51 is one of six mitotic human homologs of the E. coli RecA protein (RAD51-Paralogs) that play a central role in homologous recombination and repair of DNA double-strand breaks (DSBs). Here we demonstrate that RAD51 is important for resistance to cisplatin and mitomycin C in cells expressing the BCR/ABL oncogenic tyrosine kinase.
View Article and Find Full Text PDFExonucleolytic degradation of DNA is an essential part of many DNA metabolic processes including DNA mismatch repair (MMR) and recombination. Human exonuclease I (hExoI) is a member of a family of conserved 5' --> 3' exonucleases, which are implicated in these processes by genetic studies. Here, we demonstrate that hExoI binds strongly to hMLH1, and we describe interaction regions between hExoI and the MMR proteins hMSH2, hMSH3, and hMLH1.
View Article and Find Full Text PDFMultiple genetic alterations are commonly observed in human cancers. It has been suggested that inactivation of DNA repair pathways, which leads to an increased mutation rate and chromosomal instability, can initiate and accelerate the neoplastic process. Such a causality has been shown for DNA mismatch repair and Hereditary Nonpolyposis Colorectal Cancer (HNPCC), and evidence is accumulating that several other DNA repair pathways are frequently inactivated in different cancer types.
View Article and Find Full Text PDFHuman Rad51 (hRad51) has been found to be associated with BRCA1, BRCA2, and p53 either directly or indirectly and is one of at least eight human genes that are members of the Escherichia coli RecA/Saccharomyces cerevisiae Rad51 family thought to affect genomic stability through DNA recombination/repair processes. While inactivation of DNA mismatch repair clearly leads to instability of repeated sequences and to an increased risk for tumorigenesis, such a parallel for the RecA family members has not been reported. Recently, a high frequency of loss of heterozygosity at chromosome 15q14-15, near the genomic region containing hRad51, has been reported in human tumors (W.
View Article and Find Full Text PDFThe genomic loci for the mismatch repair genes hMSH2 and hMSH6 were mapped by fluorescence in situ hybridization, analysis of radiation hybrid panel markers, and linkage analysis of syntenic chromosome regions between human and mouse. Both genes were localized to chromosome 2p21, adjacent to the luteinizing hormone/choriogonadotropin receptor gene (LHCGR; 2p21), telomeric to the D2S123 polymorphic marker, and centromeric to the calmodulin-2 gene (CALM-2; 2p22-21) and son-of-sevenless gene (SOS; 2p22-21). The genomic locations of hMSH2 and hMSH6 appears to be within 1 Mb of each other because they could not be separated by interphase fluorescence in situ hybridization.
View Article and Find Full Text PDFDNA mismatch repair (MMR) plays a vital role in the faithful replication of DNA, and its inactivation leads to a mutator phenotype that has been associated with the common cancer susceptibility syndrome Hereditary Non-Polyposis Colorectal Cancer (HNPCC). Here, we report on a novel human exonuclease (hExoI) that is related to the yeast exonuclease 1. The hExoI cDNA comprises 2541 bp, which code for a Mr 94,000 protein that appears to be highly expressed in testis tissue and at very low levels in other tissues.
View Article and Find Full Text PDFIt is now generally accepted that the presence of 5-methylcytosine (5mC) in human DNA has both a genetic and an epigenetic effect on cellular development, differentiation and transformation. First, 5mC is more unstable than its unmethylated counterpart cytosine. Hydrolytic deamination of 5mC leads to a G/T mismatch and subsequently, if unrepaired, to a C-->T transition mutation.
View Article and Find Full Text PDFSpontaneous hydrolytic deamination of 5-methylcytosine leads to T:G mismatches in double-stranded DNA and comprises a major threat for the integrity of both the DNA primary sequence as well as the epigenetic information stored in the DNA methylation pattern. Failure of the cellular DNA repair machinery to recognize and repair such mismatched nucleotides can lead to a mutator phenotype and subsequent carcinogenesis. A thymine-DNA glycosylase (TDG) has been described that initiates T:G mismatch repair by specifically excising the mismatched T.
View Article and Find Full Text PDFMutatins of the p53 tumor suppressor gene are rare in nasopharyngeal carcinoma (NPC) patients who reside in high-risk areas, such as Southeastern China. Among this high-risk group, a pre-existing infection with the EBV and consumption of Cantonese salted fish are closely associated with NPC. We investigated the prevalence of p53 mutations in 28 primary NPC specimens from white (including Hispanic) and African-American patients in Los Angeles, who are at low risk for NPC.
View Article and Find Full Text PDFWe compared global levels of DNA methylation as well as methylation of a specific locus (MyoD1) in ovarian cystadenomas, ovarian tumours of low malignant potential (LMP) and ovarian carcinomas to investigate the association between changes in DNA methylation and ovarian tumour development. As we realized that cystadenomas showed different methylation patterns from both LMP tumours and carcinomas, we verified their monoclonal origin as a means of confirming their true neoplastic nature. High-pressure liquid chromatographic (HPLC) analyses showed that global methylation levels in LMP tumours and carcinomas were 21% and 25% lower than in cystadenomas respectively (P = 0.
View Article and Find Full Text PDFWe report here the characterization of the human tissue inhibitor of metalloproteinases-2 (TIMP-2) gene. The gene is 83 kilobase pairs (kb) long with exon-intron splicing sites located in preserved positions among the three members of the TIMP family. A 2.
View Article and Find Full Text PDFC --> T transitions at CpG sites are the most prevalent mutations found in the p53 tumor suppressor gene in human colon tumors and in the germline (Li-Fraumeni syndrome). All of the mutational hot spots are methylated to 5-methylcytosine, and it has been hypothesized that the majority of these mutations are caused by spontaneous hydrolytic deamination of this base to thymine. We have previously reported that bacterial methyltransferases induce transition mutations at CpG sites by increasing the deamination rate of C --> U when the concentration of the methyl group donor S-adenosylmethionine (AdoMet) drops below its Km, suggesting an alternative mechanism to create these mutations.
View Article and Find Full Text PDFDNA (cytosine-5)-methyltransferases can cause deamination of cytosine when the cofactor S-adenosylmethionine (AdoMet) is limiting and thus function as sequence-specific C-->U mutator enzymes. Here we explored whether mutations causing inactivation of the cofactor binding activity of the HpaII methyltransferase, thus mimicking conditions of limiting AdoMet concentration, could convert a DNA methyltransferase to a C-->U mutator enzyme. We created two mutator enzymes from the HpaII methyltransferase (F38S and G40D) which both showed enhanced cytosine deamination activities in vitro and in vivo.
View Article and Find Full Text PDFApproximately 50% of mutations that inactivate the p53 tumor suppressor gene in the germline and in colon tumors are C to T transitions at methylation sites (CpG sites). These mutations are believed to be caused by an endogenous mechanism and spontaneous deamination of 5-methyl-cytosine to T is likely to contribute significantly to this high mutation rate. The resulting T:G mismatches created by this process have been hypothesized to be less efficiently repaired than U:G mismatches formed by deamination of C.
View Article and Find Full Text PDF