A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFWe report on optical visualization of spin propagation more than 100 µm. We present an electronic system in a new state of aggregation, the magnetofermionic condensate, in which the lowest-energy spin excitations - photoexcited spin-triplet magnetoexcitons - freely propagate over long distances, in the order of a millimeter, which implies non-diffusion spin transport. Our results open up a completely new system suitable for spintronic devices.
View Article and Find Full Text PDFGrowth conditions have a tremendous impact on the unintentional background impurity concentration in gallium nitride (GaN) synthesized by molecular beam epitaxy and its resulting chemical and physical properties. In particular for oxygen identified as the dominant background impurity we demonstrate that under optimized growth stoichiometry the growth temperature is the key parameter to control its incorporation and that an increase by 55 °C leads to an oxygen reduction by one order of magnitude. Quantitatively this reduction and the resulting optical and electrical properties are analyzed by secondary ion mass spectroscopy, photoluminescence, capacitance versus voltage measurements, low temperature magneto-transport and parasitic current paths in lateral transistor test structures based on two-dimensional electron gases.
View Article and Find Full Text PDFResonant optical excitation was used to create a macroscopic nonequilibrium ensemble of "dark" excitons with an unprecedented long lifetime in a two-dimensional electron system placed in a quantizing magnetic field. Exotic three-particle and four-particle states, plasmarons and plasmon-exciton molecules, coupled with the surrounding electrons through the collective plasma oscillations are engineered. Plasmarons and plasmon-exciton molecules are manifested as new features in the recombination spectra of nonequilibrium systems.
View Article and Find Full Text PDFCoherent condensate states of particles obeying either Bose or Fermi statistics are in the focus of interest in modern physics. Here we report on condensation of collective excitations with Bose statistics, cyclotron magnetoexcitons, in a high-mobility two-dimensional electron system in a magnetic field. At low temperatures, the dense non-equilibrium ensemble of long-lived triplet magnetoexcitons exhibits both a drastic reduction in the viscosity and a steep enhancement in the response to the external electromagnetic field.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2013
Temperature-dependent reflectivity and photoluminescence spectra are studied for undoped ultra-wide 150 and 250 nm GaAs quantum wells. It is shown that spectral features previously attributed to a size quantization of the exciton motion in the z-direction coincide well with energies of quantized levels for light holes. Furthermore, optical spectra reveal very similar properties at temperatures above the exciton dissociation point.
View Article and Find Full Text PDFWe report on the observation of a new spin mode in a quantum Hall system in the vicinity of odd electron filling factors under experimental conditions excluding the possibility of Skyrmion excitations. The new mode having presumably zero energy at odd filling factors emerges at small deviations from odd filling factors and couples to the spin exciton. The existence of an extra spin mode assumes a nontrivial magnetic order at partial fillings of Landau levels surrounding quantum Hall ferromagnets other then the Skyrmion crystal.
View Article and Find Full Text PDFThe effect of tunneling on the transport properties of quantum Hall double layers in the regime of the excitonic condensate at a total filling factor one is studied in counterflow experiments. If the tunnel current I is smaller than a critical I{C}, tunneling is large and is effectively shorting the two layers. For I>I{C} tunneling becomes negligible.
View Article and Find Full Text PDFInelastic light scattering spectroscopy discloses a novel type of cyclotron spin-flip excitation in a quantum Hall system around the nu = 1/3 filling. The excitation energy follows qualitatively the degree of electron spin polarization, reaching a maximum value at nu = 1/3. This characterizes the new excitation as a nu = 1/3 ferromagnet eigenmode.
View Article and Find Full Text PDF