In vitro assessment of small-diameter synthetic vascular grafts usually uses standard cell culture conditions with early-passage cells. However, these conduits are mainly implanted in elderly patients and are subject to complex cellular interactions influenced by age and inflammation. Understanding these factors is central to the development of vascular grafts tailored to the specific needs of patients.
View Article and Find Full Text PDFBone substitutes are ideally biocompatible, osteoconductive, degradable and defect-specific and provide mechanical stability. Magnesium phosphate cements (MPCs) offer high initial stability and faster degradation compared to the well-researched calcium phosphate cements (CPCs). Calcium magnesium phosphate cements (CMPCs) should combine the properties of both and have so far shown promising results.
View Article and Find Full Text PDFThe noise in sensor data has a substantial impact on the reliability and accuracy of (ML) algorithms. A comprehensive framework is proposed to analyze the effects of diverse noise inputs in sensor data on the accuracy of ML models. Through extensive experimentation and evaluation, this research examines the resilience of a LightGBM ML model to ten different noise models, namely, Flicker, Impulse, Gaussian, Brown, Periodic, and others.
View Article and Find Full Text PDFMonitoring the metal Additive Manufacturing (AM) process is an important task within the scope of quality assurance. This article presents a method to gain insights into process quality by comparing the actual and target layers. Images of the powder bed were captured and segmented using an Xception-style neural network to predict the powder and part areas.
View Article and Find Full Text PDFIn recent years, the use of indoor localization techniques has increased significantly in a large number of areas, including industry and healthcare, primarily for monitoring and tracking reasons. From the field of radio frequency technologies, an ultra-wideband (UWB) system offers comparatively high accuracy and is therefore suitable for use cases with high precision requirements in position determination, for example for localizing an employee when interacting with a machine tool on the shopfloor. Indoor positioning systems with radio signals are influenced by environmental obstacles.
View Article and Find Full Text PDFRegenerative bone implants should be completely replaced by new bone within a period of time corresponding to the growth rate of native bone. To meet this requirement, suitable biomaterials must be biodegradable and promote osteogenesis. The combination of slowly degrading but osteoconductive calcium phosphates (CPs) with rapidly degrading and mechanically more resilient magnesium phosphates represents a promising material class for this purpose.
View Article and Find Full Text PDFDue to the positive effects of magnesium substitution on the mechanical properties and the degradation rate of the clinically well-established calcium phosphate cements (CPCs), calcium magnesium phosphate cements (CMPCs) are increasingly being researched as bone substitutes. A post-treatment alters the materials' physical properties and chemical composition, reinforcing the structure and modifying the degradation rate. By alkaline post-treatment with diammonium hydrogen phosphate (DAHP, (NH)HPO), the precipitation product struvite is formed, while post-treatment with an acidic phosphate solution [e.
View Article and Find Full Text PDFRegenerative bone implants promote new bone formation and ideally degrade simultaneously to osteogenesis. Although clinically established calcium phosphate bone grafts provide excellent osseointegration and osteoconductive efficacy, they are limited in terms of bioresorption. Magnesium phosphate (MP) based ceramics are a promising alternative, because they are biocompatible, mechanically extremely stable, and degrade much faster than calcium phosphates under physiological conditions.
View Article and Find Full Text PDF