We study the superradiant emission of an inverted spin ensemble strongly coupled to a superconducting cavity. After fast inversion, we detune the spins from the cavity and store the inversion for tens of milliseconds, during which the remaining transverse spin components disappear. Switching back on resonance enables us to study the onset of superradiance.
View Article and Find Full Text PDFWe investigate signal propagation in a quantum field simulator of the Klein-Gordon model realized by two strongly coupled parallel one-dimensional quasi-condensates. By measuring local phononic fields after a quench, we observe the propagation of correlations along sharp light-cone fronts. If the local atomic density is inhomogeneous, these propagation fronts are curved.
View Article and Find Full Text PDFWe study Floquet engineering of the tunnel coupling between a pair of one-dimensional bosonic quasicondensates in a tilted double-well potential. By modulating the energy difference between the two wells, we reestablish tunnel coupling and precisely control its amplitude and phase. This allows us to initiate coherence between two initially uncorrelated Bose gases and prepare different initial states in the emerging sine-Gordon Hamiltonian.
View Article and Find Full Text PDFIn an effort to address integrability breaking in cold gas experiments, we extend the integrable hydrodynamics of the Lieb-Liniger model with two additional components representing the population of atoms in the first and second transverse excited states, thus enabling a description of quasi-1D condensates. Collisions between different components are accounted for through the inclusion of a Boltzmann-type collision integral in the hydrodynamic equation. Contrary to standard generalized hydrodynamics, our extended model captures thermalization of the condensate at a rate consistent with experimental observations from a quantum Newton's cradle setup.
View Article and Find Full Text PDFWe demonstrate a source for correlated pairs of atoms characterized by two opposite momenta and two spatial modes forming a Bell state only involving external degrees of freedom. We characterize the state of the emitted atom beams by observing strong number squeezing up to -10 dB in the correlated two-particle modes of emission. We furthermore demonstrate genuine two-particle interference in the normalized second-order correlation function g^{(2)} relative to the emitted atoms.
View Article and Find Full Text PDFThe Unruh effect predicts a thermal response for an accelerated detector moving through the vacuum. Here we propose an interferometric scheme to observe an analogue of the circular Unruh effect using a localized laser coupled to a Bose-Einstein condensate (BEC). Quantum fluctuations in the condensate are governed by an effective relativistic field theory, and as demonstrated, the coupled laser field acts as an effective Unruh-DeWitt detector thereof.
View Article and Find Full Text PDFWe report the analog simulation of an ergodic-localized junction by using an array of 12 coupled superconducting qubits. To perform the simulation, we fabricated a superconducting quantum processor that is divided into two domains: one is a driven domain representing an ergodic system, while the second is localized under the effect of disorder. Because of the overlap between localized and delocalized states, for a small disorder there is a proximity effect and localization is destroyed.
View Article and Find Full Text PDFWe explore the ground states of a few dipolar bosons in optical lattices with incommensurate filling. The competition of kinetic, potential, and interaction energies leads to the emergence of a variety of crystal state orders with characteristic one- and two-body densities. We probe the transitions between these orders and construct the emergent state diagram as a function of the dipolar interaction strength and the lattice depth.
View Article and Find Full Text PDFWe use laser light shaped by a digital micro-mirror device to realize arbitrary optical dipole potentials for one-dimensional (1D) degenerate Bose gases of Rb trapped on an atom chip. Superposing optical and magnetic potentials combines the high flexibility of optical dipole traps with the advantages of magnetic trapping, such as effective evaporative cooling and the application of radio-frequency dressed state potentials. As applications, we present a 160 µm long box-like potential with a central tuneable barrier, a box-like potential with a sinusoidally modulated bottom and a linear confining potential.
View Article and Find Full Text PDFTopological quantum states are characterized by nonlocal invariants. We present a new dynamical approach for ultracold-atom systems to uncover their band topology, and we provide solid evidence to demonstrate its experimental advantages. After quenching a two-dimensional (2D) Chern band, realized in an ultracold ^{87}Rb gas from a trivial to a topological parameter regime, we observe an emerging ring structure in the spin dynamics during the unitary evolution, which uniquely corresponds to the Chern number for the postquench band.
View Article and Find Full Text PDFUnderstanding the behaviour of isolated quantum systems far from equilibrium and their equilibration is one of the most pressing problems in quantum many-body physics. There is strong theoretical evidence that sufficiently far from equilibrium a wide variety of systems-including the early Universe after inflation, quark-gluon matter generated in heavy-ion collisions, and cold quantum gases-exhibit universal scaling in time and space during their evolution, independent of their initial state or microscale properties. However, direct experimental evidence is lacking.
View Article and Find Full Text PDFWe present an experimental study on the nonequilibrium tunnel dynamics of two coupled one-dimensional Bose-Einstein quasicondensates deep in the Josephson regime. Josephson oscillations are initiated by splitting a single one-dimensional condensate and imprinting a relative phase between the superfluids. Regardless of the initial state and experimental parameters, the dynamics of the relative phase and atom number imbalance shows a relaxation to a phase-locked steady state.
View Article and Find Full Text PDFThe complexity of interacting quantum many-body systems leads to exceedingly long recurrence times of the initial quantum state for all but the smallest systems. For large systems, one cannot probe the full quantum state in all its details. Thus, experimentally, recurrences can only be determined on the level of the accessible observables.
View Article and Find Full Text PDFLongitudinal relaxation is the process by which an excited spin ensemble decays into its thermal equilibrium with the environment. In solid-state spin systems, relaxation into the phonon bath usually dominates over the coupling to the electromagnetic vacuum. In the quantum limit, the spin lifetime is determined by phononic vacuum fluctuations .
View Article and Find Full Text PDFNonlinear systems, whose outputs are not directly proportional to their inputs, are well known to exhibit many interesting and important phenomena that have profoundly changed our technological landscape over the last 50 years. Recently, the ability to engineer quantum metamaterials through hybridization has allowed us to explore these nonlinear effects in systems with no natural analog. We investigate amplitude bistability, which is one of the most fundamental nonlinear phenomena, in a hybrid system composed of a superconducting resonator inductively coupled to an ensemble of nitrogen-vacancy centers.
View Article and Find Full Text PDFQuantum systems can be characterized by their correlations. Higher-order (larger than second order) correlations, and the ways in which they can be decomposed into correlations of lower order, provide important information about the system, its structure, its interactions and its complexity. The measurement of such correlation functions is therefore an essential tool for reading, verifying and characterizing quantum simulations.
View Article and Find Full Text PDFWe report coherent coupling between two macroscopically separated nitrogen-vacancy electron spin ensembles in a cavity quantum electrodynamics system. The coherent interaction between the distant ensembles is directly detected in the cavity transmission spectrum by observing bright and dark collective multiensemble states and an increase of the coupling strength to the cavity mode. Additionally, in the dispersive limit we show transverse ensemble-ensemble coupling via virtual photons.
View Article and Find Full Text PDFQuantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal.
View Article and Find Full Text PDFIn this article we present a simple repeater scheme based on the negatively-charged nitrogen vacancy centre in diamond. Each repeater node is built from modules comprising an optical cavity containing a single NV(-), with one nuclear spin from (15)N as quantum memory. The module uses only deterministic processes and interactions to achieve high fidelity operations (>99%), and modules are connected by optical fiber.
View Article and Find Full Text PDFWe experimentally study the dynamics of a degenerate one-dimensional Bose gas that is subject to a continuous outcoupling of atoms. Although standard evaporative cooling is rendered ineffective by the absence of thermalizing collisions in this system, we observe substantial cooling. This cooling proceeds through homogeneous particle dissipation and many-body dephasing, enabling the preparation of otherwise unexpectedly low temperatures.
View Article and Find Full Text PDFWe experimentally demonstrate a simple yet versatile optimal quantum control technique that achieves tailored robustness against qubit inhomogeneities and control errors while requiring minimal bandwidth. We apply the technique to nitrogen-vacancy (NV) centers in diamond and verify its performance using quantum process tomography. In a wide-field NV center magnetometry scenario, we achieve a homogeneous sensitivity across a 33% drop in control amplitude, and we improve the sensitivity by up to 2 orders of magnitude for a normalized detuning as large as 40%, achieving a value of 20 nT Hz(-1/2) μm(3/2) in sensitivity times square root volume.
View Article and Find Full Text PDFThe experimental realization of large-scale many-body systems in atomic-optical architectures has seen immense progress in recent years, rendering full tomography tools for state identification inefficient, especially for continuous systems. To work with these emerging physical platforms, new technologies for state identification are required. Here we present first steps towards efficient experimental quantum-field tomography.
View Article and Find Full Text PDF