Microtubular optical resonators are monolithically integrated on photonic chips to demonstrate optofluidic functionality. Due to the compact subwavelength-thin tube wall and a well-defined nanogap between polymer photonic waveguides and the microtube, excellent optical coupling with extinction ratios up to 32 dB are observed in the telecommunication relevant wavelength range. For the first time, optofluidic applications of fully on-chip integrated microtubular systems are investigated both by filling the core of the microtube and by the microtube being covered by a liquid droplet.
View Article and Find Full Text PDFMagnetic random access memory schemes employing magnetoelectric coupling to write binary information promise outstanding energy efficiency. We propose and demonstrate a purely antiferromagnetic magnetoelectric random access memory (AF-MERAM) that offers a remarkable 50-fold reduction of the writing threshold compared with ferromagnet-based counterparts, is robust against magnetic disturbances and exhibits no ferromagnetic hysteresis losses. Using the magnetoelectric antiferromagnet CrO, we demonstrate reliable isothermal switching via gate voltage pulses and all-electric readout at room temperature.
View Article and Find Full Text PDFNanostructured TiO of different polymorphs, mostly prepared by hydro/solvothermal methods, have been extensively studied for more than a decade as anode materials in lithium ion batteries. Enormous efforts have been devoted to improving the electrical conductivity and lithium ion diffusivity in chemically synthesized TiO nanostructures. In this work we demonstrate that 3D Ti-self-doped TiO (TiO) nanomembranes, which are prepared by physical vapor deposition combined with strain-released rolled-up technology, have a great potential to address several of the long-standing challenges associated with TiO anodes.
View Article and Find Full Text PDFWe explore a method to achieve electrical control over the energy of on-demand entangled-photon emission from self-assembled quantum dots (QDs). The device used in our work consists of an electrically tunable diode-like membrane integrated onto a piezoactuator, which is capable of exerting a uniaxial stress on QDs. We theoretically reveal that, through application of the quantum-confined Stark effect to QDs by a vertical electric field, the critical uniaxial stress used to eliminate the fine structure splitting of QDs can be linearly tuned.
View Article and Find Full Text PDFStimulus-responsive micro-supercapacitors (SR-MSCs) with ultrahigh volumetric energy density and reversible electrochromic effect are successfully fabricated by employing a vanadium pentoxide and electrochemical exfoliated graphene-based hybrid nanopaper and viologen as electrode and stimulus-responsive material, respectively. The fabricated high-performance SR-MSCs offer new opportunities for intuitively observing the working state of energy devices without the aid of extra equipment and techniques.
View Article and Find Full Text PDFThe 'Symphyta' is a paraphyletic assemblage at the base of the order Hymenoptera, comprising 14 families and about 8750 species. All have phytophagous larvae, except for the Orussidae, which are parasitoids. This study presents and evaluates the results of DNA barcoding of approximately 5360 specimens of 'Symphyta', mainly adults, and 4362 sequences covering 1037 species were deemed of suitable quality for inclusion in the analysis.
View Article and Find Full Text PDFThe thymidine analogue T was used for the first fluorescence-based study of direct, site-specific metal binding reactions involving unmodified nucleobases in duplex DNA. The fluorescence properties of T-A base pairs were highly sensitive to mercury binding reactions at T-T mismatches located at an adjacent site or one base pair away. This allowed for precise determination of the local kinetic and thermodynamic parameters of T-Hg-T binding reactions.
View Article and Find Full Text PDFThe transport length l and the mean free path l are determined for bulk and surface states in a BiSe nanoribbon by quantum transport and transconductance measurements. We show that the anisotropic scattering of spin-helical Dirac fermions results in a strong enhancement of l (≈ 200 nm) and of the related mobility μ (≈ 4000 cm V s), which confirms theoretical predictions.1 Despite strong disorder, the long-range nature of the scattering potential gives a large ratio l/l ≈ 8, likely limited by bulk/surface coupling.
View Article and Find Full Text PDFResistively switching oxides are promising materials for use in electronic applications such as nonvolatile memories, logic gates, and artificial synapses. This work presents the bipolar resistive switching (BRS) in YMnO/Nb:SrTiO pn-heterojunctions. A thermally driven electroforming process is required prior to the observed BRS.
View Article and Find Full Text PDFSoil nematode feeding groups are a long-established trophic categorisation largely based on morphology and are used in ecological indices to monitor and analyse the biological state of soils. Stable isotope ratio analysis ((13)C/(12)C and (15)N/(14)N, expressed as δ (13)C and δ (15)N) has provided verification of, and novel insights into, the feeding ecology of soil animals such as earthworms and mites. However, isotopic studies of soil nematodes have been limited to date as conventional stable isotope ratio analysis needs impractically large numbers of nematodes (up to 1,000) to achieve required minimum sample weights (typically >100 µg C and N).
View Article and Find Full Text PDFAn electrochemical approach for manufacturing light-driven nanostructured titanium dioxide (TiO ) microengines with controlled spatial architecture for improved performance is reported. The microengines based on microscale arrays of TiO nanotubes with variable (50-120 nm) inner diameter show a quasi-ordered arrangement of nanotubes, being the smallest tubular entities for catalytic microengines reported to date. The nanotubes exhibit well defined crystalline phases depending upon the postfabrication annealing conditions that determine the microengines' efficiency.
View Article and Find Full Text PDFElastic strain fields based on single crystal piezoelectric elements represent an effective way for engineering the quantum dot (QD) emission with unrivaled precision and technological relevance. However, pioneering researches in this direction were mainly based on bulk piezoelectric substrates, which prevent the development of chip-scale devices. Here, we present a monolithically integrated Microelectromechanical systems (MEMS) device with great potential for on-chip quantum photonic applications.
View Article and Find Full Text PDFWe realized a deterministic transport system for superparamagnetic microbeads through micrometer-sized tubes acting as channels. Beads are moved stepwise in a paternoster-like manner through the tube and back on top of it by weak magnetic field pulses without changing the field pulse polarity and taking advantage of the magnetic stray field emerging from the tubular structures. The microtubes are engineered by rolling up exchange bias layer systems, magnetically patterned into parallel stripe magnetic domains.
View Article and Find Full Text PDFPediatric cancers, including Ewing sarcoma (ES), are only weakly immunogenic and the tumor-patients' immune system often is devoid of effector T cells for tumor elimination. Based on expression profiling technology, targetable tumor-associated antigens (TAA) are identified and exploited for engineered T-cell therapy. Here, the specific recognition and lytic potential of transgenic allo-restricted CD8(+) T cells, directed against the ES-associated antigen 6-transmembrane epithelial antigen of the prostate 1 (STEAP1), was examined.
View Article and Find Full Text PDFInformation tagging and processing are vital in information-intensive applications, e.g., telecommunication and high-throughput drug screening.
View Article and Find Full Text PDFVertical gold nanogaps are created on microtubular cavities to explore the coupling between resonant light supported by the microcavities and surface plasmons localized at the nanogaps. Selective coupling of optical axial modes and localized surface plasmons critically depends on the exact location of the gold nanogap on the microcavities, which is conveniently achieved by rolling up specially designed thin dielectric films into three-dimensional microtube cavities. The coupling phenomenon is explained by a modified quasipotential model based on perturbation theory.
View Article and Find Full Text PDFMicroarray analysis revealed genes of the posterior HOXD locus normally involved in bone formation to be over-expressed in primary Ewing sarcoma (ES). The expression of posterior HOXD genes was not influenced via ES pathognomonic EWS/ETS translocations. However, knock down of the dickkopf WNT signaling pathway inhibitor 2 (DKK2) resulted in a significant suppression of HOXD10, HOXD11 and HOXD13 while over-expression of DKK2 and stimulation with factors of the WNT signaling pathway such as WNT3a, WNT5a or WNT11 increased their expression.
View Article and Find Full Text PDFBackground: As lung function declines rapidly in the early stages of chronic obstructive pulmonary disease (COPD), the effects of bronchodilators in patients with moderate disease and those who have not previously received maintenance therapy are of interest. OTEMTO® 1 and 2 were two replicate, 12-week, Phase III studies investigating the benefit of tiotropium + olodaterol on lung function and quality of life in patients with moderate to severe disease. Post hoc analyses were performed to assess the benefits for patients according to disease severity and treatment history.
View Article and Find Full Text PDFIn vivo, mammalian cells proliferate within 3D environments consisting of numerous microcavities and channels, which contain a variety of chemical and physical cues. External environments often differ between normal and pathological states, such as the unique spatial constraints that metastasizing cancer cells experience as they circulate the vasculature through arterioles and narrow capillaries, where they can divide and acquire elongated cylindrical shapes. While metastatic tumors cause most cancer deaths, factors impacting early cancer cell proliferation inside the vasculature and those that can promote the formation of secondary tumors remain largely unknown.
View Article and Find Full Text PDFWe report an ultrasensitive label-free DNA biosensor with fully on-chip integrated rolled-up nanomembrane electrodes. The hybridization of complementary DNA strands (avian influenza virus subtype H1N1) is selectively detected down to attomolar concentrations, an unprecedented level for miniaturized sensors without amplification. Impedimetric DNA detection with such a rolled-up biosensor shows 4 orders of magnitude sensitivity improvement over its planar counterpart.
View Article and Find Full Text PDFA proof-of-concept design for autonomous, self-propelling motors towards value-added product synthesis and separation is presented. The hybrid motor design consists of two distinct functional blocks. The first, a sodium borohydride (NaBH4 ) granule, serves both as a reaction prerequisite for the reduction of vanillin and also as a localized solid-state fuel in the reaction mixture.
View Article and Find Full Text PDFLuminescent nanoparticles (NPs) are deposited onto two dimensional (2D) pre-strained TiO2 nanomembranes by spin-coating. After rolling up the 2D differentially strained TiO2 nanomembranes into 3D microtube structures, the NPs are embedded within the tube windings. The embedded NPs serve as a light source for optical whispering-gallery-mode resonances under laser excitation, and therefore allow the TiO2 microtube to work as an active microcavity operating in emission mode.
View Article and Find Full Text PDFBackground: In Australia, the subfamily Larentiinae (Lepidoptera: Geometridae) comprises over 45 genera with about 270 species described so far. However, life histories of the Australian larentiine moths have barely been studied.
New Information: The current paper presents a list of larval food plants of 51 Australian larentiine species based on literature references, data from specimen labels and own observations.