The plant extract aristolochic acid (AA), containing aristolochic acids I (AAI) and II (AAII) as major components, causes aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN), unique renal diseases associated with upper urothelial cancer. Recently (Chemical Research in Toxicology 33(11), 2804-2818, 2020), we showed that the metabolism of AAI and AAII in Wistar rats is influenced by their co-exposure (i.e.
View Article and Find Full Text PDFRadiopharmaceuticals used for diagnosis or therapy induce DNA strand breaks, which may be detectable by single-cell gel electrophoresis (called comet assay). Blood was taken from patients before and at different time points after treatment with radiopharmaceuticals; blood cells were investigated by the comet assay using the percentage of DNA in the tail as the critical parameter. Whereas [225Ac]Ac-prostate-specific membrane antigen (PSMA)-617 alpha therapy showed no difference relative to the blood sample taken before treatment, beta therapy with [177Lu]Lu-PSMA-617 3 h post-injection revealed a small but significant increase in DNA strand breaks.
View Article and Find Full Text PDFAlthough ellipticine (Elli) is an efficient anticancer agent, it exerts several adverse effects. One approach to decrease the adverse effects of drugs is their encapsulation inside a suitable nanocarrier, allowing targeted delivery to tumour tissue whereas avoiding healthy cells. We constructed a nanocarrier from apoferritin (Apo) bearing ellipticine, ApoElli, and subsequently characterized.
View Article and Find Full Text PDFMethylating substances alter DNA by forming N3-methylthymidine (N3mT), a mutagenic base modification. To develop a sensitive analytical method for the detection of N3mT in DNA based on capillary electrophoresis with laser-induced fluorescence detection (CE-LIF), we synthesized the N3mT-3'-phosphate as a chemical standard. The limit of detection was 1.
View Article and Find Full Text PDFA new sensitive analytical method using capillary electrophoresis with laser induced fluorescence (CE-LIF) was applied for the simultaneous detection of DNA methylation and hydroxymethylation levels in human cancers of different origin. DNA hydroxymethylation, measured as 5-hydroxymethylcytosine (5hmC) levels, was decreased in gliomas with mutation in the isocitrate dehydrogenase 1 (IDH1) gene when compared to IDH1-wildtype gliomas. Independent from IDH1 mutation, 5hmC levels were decreased in lung carcinomas when compared to normal lung tissue.
View Article and Find Full Text PDFThe anticancer drug ellipticine exerts its genotoxic effects after metabolic activation by cytochrome P450 (CYP) enzymes. The present study has examined the role of cytochrome P450 oxidoreductase (POR) and cytochrome b (Cyb5), electron donors to P450 enzymes, in the CYP-mediated metabolism and disposition of ellipticine in vivo. We used Hepatic Reductase Null (HRN) and Hepatic Cytochrome b/P450 Reductase Null (HBRN) mice.
View Article and Find Full Text PDFThe tumour suppressor p53, encoded by TP53, is a key player in a wide network of signalling pathways. We investigated its role in the bioactivation of the environmental carcinogen 3-nitrobenzanthrone (3-NBA)found in diesel exhaust and its metabolites 3-aminobenzanthrone (3-ABA) and N-hydroxy-3-aminobenzanthrone (N-OH-3-ABA) in a panel of isogenic human colorectal HCT116 cells differing only with respect to their TP53 status [i.e.
View Article and Find Full Text PDFEndocrine disruptors (EDs) are compounds that interfere with the balance of the endocrine system by mimicking or antagonising the effects of endogenous hormones, by altering the synthesis and metabolism of natural hormones, or by modifying hormone receptor levels. The synthetic estrogen 17α-ethinylestradiol (EE2) and the environmental carcinogen benzo[a]pyrene (BaP) are exogenous EDs whereas the estrogenic hormone 17β-estradiol is a natural endogenous ED. Although the biological effects of these individual EDs have partially been studied previously, their toxicity when acting in combination has not yet been investigated.
View Article and Find Full Text PDFBenzo[a]pyrene (BaP) is an environmental pollutant that, based on evidence largely from in vitro studies, exerts its genotoxic effects after metabolic activation by cytochrome P450s. In the present study, Hepatic Reductase Null (HRN) and Hepatic Cytochrome b /P450 Reductase Null (HBRN) mice have been used to study the role of P450s in the metabolic activation of BaP in vivo. In HRN mice, cytochrome P450 oxidoreductase (POR), the electron donor to P450, is deleted specifically in hepatocytes.
View Article and Find Full Text PDFNeuroblastoma (NBL) originates from undifferentiated cells of the sympathetic nervous system. Chemotherapy is judged to be suitable for successful treatment of this disease. Here, the influence of histone deacetylase (HDAC) inhibitor valproate (VPA) combined with DNA-damaging chemotherapeutic, ellipticine, on UKF-NB-4 and SH-SY5Y neuroblastoma cells was investigated.
View Article and Find Full Text PDFAbstract: Ellipticine is an anticancer agent that forms covalent DNA adducts after enzymatic activation by cytochrome P450 (CYP) enzymes, mainly by CYP3A4. This process is one of the most important ellipticine DNA-damaging mechanisms for its antitumor action. Here, we investigated the efficiencies of human hepatic microsomes and human recombinant CYP3A4 expressed with its reductase, NADPH:CYP oxidoreductase (POR), NADH:cytochrome reductase and/or cytochrome in Supersomes™ to oxidize this drug.
View Article and Find Full Text PDFAbstract: The herbal drug aristolochic acid, a natural mixture of 8-methoxy-6-nitrophenanthro[3,4-]-1,3-dioxole-5-carboxylic acid (AAI) and 6-nitrophenanthro[3,4-]-1,3-dioxole-5-carboxylic acid (AAII), is derived from species and is the cause of two nephropathies. Ingestion of aristolochic acid is associated with the development of urothelial tumors linked with aristolochic acid nephropathy and is implicated in the development of Balkan endemic nephropathy-associated urothelial tumors. The -demethylated metabolite of AAI, 8-hydroxyaristolochic acid (AAIa), is the detoxification product of AAI generated by its oxidative metabolism.
View Article and Find Full Text PDFAbstract: Cytochrome P450 (CYP) 1A1 is the most important enzyme activating and detoxifying the human carcinogen benzo[]pyrene (BaP). In the previous studies, we had shown that not only the canonic NADPH:CYP oxidoreductase (POR) can act as electron donor but also cytochrome and its reductase, NADH:cytochrome reductase. Here, we studied the role of the expression system used on the metabolites generated and the levels of DNA adducts formed by activated BaP.
View Article and Find Full Text PDFAristolochic acid (AA) is a plant alkaloid that causes aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN), unique renal diseases frequently associated with upper urothelial cancer (UUC). This review summarizes the significance of AA-derived DNA adducts in the aetiology of UUC leading to specific A:T to T:A transversion mutations (mutational signature) in AAN/BEN-associated tumours, which are otherwise rare in individuals with UCC not exposed to AA. Therefore, such DNA damage produced by AA-DNA adducts is one rare example of the direct association of exposure and cancer development (UUC) in humans, confirming that the covalent binding of carcinogens to DNA is causally related to tumourigenesis.
View Article and Find Full Text PDFExposure to aristolochic acid (AA) causes aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN). Conflicting results have been found for the role of human sulfotransferase 1A1 (SULT1A1) contributing to the metabolic activation of aristolochic acid I (AAI) in vitro. We evaluated the role of human SULT1A1 in AA bioactivation in vivo after treatment of transgenic mice carrying a functional human SULT1A1-SULT1A2 gene cluster (i.
View Article and Find Full Text PDFBalkan endemic nephropathy (BEN) is a unique, chronic renal disease frequently associated with upper urothelial cancer (UUC). It only affects residents of specific farming villages located along tributaries of the Danube River in Bosnia-Herzegovina, Croatia, Macedonia, Serbia, Bulgaria, and Romania where it is estimated that ~100,000 individuals are at risk of BEN, while ~25,000 have the disease. This review summarises current findings on the aetiology of BEN.
View Article and Find Full Text PDFBenzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after activation by cytochrome P450 (P450). Here, we investigated whether NADH:cytochrome b5 reductase (CBR) in the presence of cytochrome b5 can act as sole electron donor to human P450 1A1 during BaP oxidation and replace the canonical NADPH:cytochrome P450 reductase (POR) system. We also studied the efficiencies of the coenzymes of these reductases, NADPH as a coenzyme of POR, and NADH as a coenzyme of CBR, to mediate BaP oxidation.
View Article and Find Full Text PDFProstaglandins Other Lipid Mediat
March 2016
Epoxyeicosatrienoic acids (EETs) are potent lipid mediators formed by cytochrome P450 epoxygenases from arachidonic acid. They consist of four regioisomers of cis-epoxyeicosatrienoic acids: 5,6-, 8,9-, 11,12- and 14,15-EET. Here we investigated whether these triene epoxides are electrophilic enough to form covalent adducts with DNA in vitro.
View Article and Find Full Text PDFAbstract: The microsomal protein cytochrome , which is located in the membrane of the endoplasmic reticulum, has been shown to modulate many reactions catalyzed by cytochrome P450 (CYP) enzymes. We investigated the influence of exposure to the anticancer drug ellipticine and to two environmental carcinogens, benzo[]pyrene (BaP) and 1-phenylazo-2-naphthol (Sudan I), on the expression of cytochrome in livers of rats, both at the mRNA and protein levels. We also studied the effects of these compounds on their own metabolism and the formation of DNA adducts generated by their activation metabolite(s) in vitro.
View Article and Find Full Text PDFAbstract: Benzo[]pyrene (BaP) is a human carcinogen that covalently binds to DNA after metabolic activation by cytochrome P450 (CYP) enzymes. Here we investigated the efficiencies of rat hepatic microsomes and rat recombinant CYP1A1 expressed with its reductase, NADPH:CYP oxidoreductase (POR), NADH:cytochrome reductase, epoxide hydrolase and/or cytochrome in Supersomes™ to metabolize this carcinogen. We also studied the effectiveness of coenzymes of two of the microsomal reductases, NADPH as a coenzyme of POR, and NADH as a coenzyme of NADH:cytochrome reductase, to mediate BaP metabolism in these systems.
View Article and Find Full Text PDFBenzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after metabolic activation by cytochrome P450 (CYP) enzymes. In this study human recombinant CYPs (CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C19, 2E1, 3A4, and 3A5) were expressed in Supersomes™ together with their reductases, NADPH:CYP oxidoreductase, epoxide hydrolase and cytochrome b5 , to investigate BaP metabolism. Human CYPs produced up to eight BaP metabolites.
View Article and Find Full Text PDFUnlabelled: Aristolochic acid I (AAI) is a plant drug found in Aristolochia species that causes aristolochic acid nephropathy, Balkan endemic nephropathy and their associated urothelial malignancies. AAI is activated via nitroreduction producing genotoxic N-hydroxyaristolactam, which forms DNA adducts. The major enzymes responsible for the reductive bioactivation of AAI are
Nad(p)h: quinone oxidoreductase and cytochromes P450 (CYP) 1A1 and 1A2.
Unlabelled: Aristolochic acid I (AAI) is a natural plant alkaloid causing aristolochic acid nephropathy, Balkan endemic nephropathy and their associated urothelial malignancies. One of the most efficient enzymes reductively activating AAI to species forming AAI-DNA adducts is cytosolic
Nad(p)h: quinone oxidoreductase 1. AAI is also either reductively activated or oxidatively detoxified to 8-hydroxyaristolochic acid (AAIa) by microsomal cytochrome P450 (CYP) 1A1 and 1A2.