Publications by authors named "Schmaus S"

The emergence of nematic electronic states accompanied by a structural phase transition is a recurring theme in many correlated electron materials, including the high-temperature copper oxide- and iron-based superconductors. We provide evidence for nematic electronic states in the iron-chalcogenide superconductor FeSe0.4Te0.

View Article and Find Full Text PDF

Spin-polarized scanning tunneling microscopy (SP-STM) has been used extensively to study magnetic properties of nanostructures. Using SP-STM to visualize magnetic order in strongly correlated materials on an atomic scale is highly desirable, but challenging. We achieved this goal in iron tellurium (Fe(1+ y)Te), the nonsuperconducting parent compound of the iron chalcogenides, by using a STM tip with a magnetic cluster at its apex.

View Article and Find Full Text PDF

C58 fullerenes were adsorbed onto room temperature Au(111) surface by low-energy (~6 eV) cluster ion beam deposition under ultrahigh vacuum conditions. The topographic and electronic properties of the deposits were monitored by means of scanning tunnelling microscopy (STM at 4.2 K).

View Article and Find Full Text PDF

The magnetoresistance of a hydrogen-phthalocyanine molecule placed on an antiferromagnetic Mn(001) surface and contacted by a ferromagnetic Fe electrode is investigated using density functional theory based transport calculations and low-temperature scanning tunneling microscopy. A large and negative magnetoresistance ratio of ~50% is observed in combination with a high conductance. The effect originates from a lowest unoccupied molecular orbital (LUMO) doublet placed almost in resonance with the Fermi energy.

View Article and Find Full Text PDF

Magnetoresistance is a change in the resistance of a material system caused by an applied magnetic field. Giant magnetoresistance occurs in structures containing ferromagnetic contacts separated by a metallic non-magnetic spacer, and is now the basis of read heads for hard drives and for new forms of random access memory. Using an insulator (for example, a molecular thin film) rather than a metal as the spacer gives rise to tunnelling magnetoresistance, which typically produces a larger change in resistance for a given magnetic field strength, but also yields higher resistances, which are a disadvantage for real device operation.

View Article and Find Full Text PDF

This randomized, open-label, active-controlled, dose-finding phase IIb study evaluated the efficacy and safety of trabedersen (AP 12009) administered intratumorally by convection-enhanced delivery compared with standard chemotherapy in patients with recurrent/refractory high-grade glioma. One hundred and forty-five patients with central reference histopathology of recurrent/refractory glioblastoma multiforme (GBM) or anaplastic astrocytoma (AA) were randomly assigned to receive trabedersen at doses of 10 or 80 µM or standard chemotherapy (temozolomide or procarbazine/lomustine/vincristine). Primary endpoint was 6-month tumor control rate, and secondary endpoints included response at further timepoints, survival, and safety.

View Article and Find Full Text PDF

Overexpression of the cytokine transforming growth factor-beta 2 (TGF-beta2) is a hallmark of various malignant tumors including pancreatic carcinoma, malignant glioma, metastasizing melanoma, and metastatic colorectal carcinoma. This is due to the pivotal role of TGF-beta2 as it regulates key mechanisms of tumor development, namely immunosuppression, metastasis, angiogenesis, and proliferation. The antisense technology is an innovative technique offering a targeted approach for the treatment of different highly aggressive tumors and other diseases.

View Article and Find Full Text PDF

Transforming growth factor-beta2 (TGF-beta2) is known to suppress the immune response to cancer cells and plays a pivotal role in tumor progression by regulating key mechanisms including proliferation, metastasis, and angiogenesis. For targeted protein suppression the TGF-beta2-specific antisense oligodeoxynucleotide AP 12009 was developed. In vitro experiments have been performed to prove specificity and efficacy of the TGF-beta2 inhibitor AP 12009 employing patient-derived malignant glioma cells as well as peripheral blood mononuclear cells (PBMCs) from patients.

View Article and Find Full Text PDF

The open reading frame BPLF1 of Epstein-Barr virus (EBV) shows homology to the Herpes simplex virus 1 (HSV1) protein VP16. This protein is a structural tegument component playing a pivotal role for HSV replication as trans-activator of viral immediate-early genes. An EBV gene with a comparable function has not been described so far.

View Article and Find Full Text PDF