The 2017 Event Horizon Telescope (EHT) observations of the central source in M87 have led to the first measurement of the size of a black-hole shadow. This observation offers a new and clean gravitational test of the black-hole metric in the strong-field regime. We show analytically that spacetimes that deviate from the Kerr metric but satisfy weak-field tests can lead to large deviations in the predicted black-hole shadows that are inconsistent with even the current EHT measurements.
View Article and Find Full Text PDFHeat transport and ice sublimation in comets are interrelated processes reflecting properties acquired at the time of formation and during subsequent evolution. The Microwave Instrument on the Rosetta Orbiter (MIRO) acquired maps of the subsurface temperature of comet 67P/Churyumov-Gerasimenko, at 1.6 mm and 0.
View Article and Find Full Text PDFWe describe the fringe-packet tracking system used to equalize the optical path lengths at the Infrared Optical Telescope Array interferometer. The measurement of closure phases requires obtaining fringes on three baselines simultaneously. This is accomplished by use of an algorithm based on double Fourier interferometry for obtaining the wavelength-dependent phase of the fringes and a group-delay tracking algorithm for determining the position of the fringe packet.
View Article and Find Full Text PDFThe Instituto Nacional de Astrofísica, Optica y Electrónica in Mexico and the University of Massachusetts in the U.S.A.
View Article and Find Full Text PDFThe HCO+ J = 1-0 rotational transition at 89.189 GHz has been mapped in comet Hale-Bopp (C/1995 O1) over a total of 38 individual days spanning the period 1997 March 10-June 20 with the Five College Radio Astronomy Observatory 14 m antenna. HCO+ is detectable over an extended region of the comet, with the peak emission commonly located 50,000-100,000 km in the antisolar direction.
View Article and Find Full Text PDFWe present a comprehensive study of the physical and chemical conditions along the TMC-1 ridge. Temperatures were estimated from observations of CH3CCH, NH3, and CO. Densities were obtained from a multitransition study of HC3N.
View Article and Find Full Text PDFSignificant gas-phase chemistry occurs in the comae of bright comets, as is demonstrated here for the case of Comet Hale-Bopp. The abundance ratio of the two isomers, hydrogen cyanide and hydrogen isocyanide, is shown to vary with heliocentric distance in a way that is consistent with production of HNC by ion-molecule chemistry initiated by the photoionization of water. Likewise, the first maps of emission from HCO+ show an abundance and an extended distribution that are consistent with the same chemical model.
View Article and Find Full Text PDFThe discovery of hydrogen isocyanide (HNC) in comet Hyakutake with an abundance (relative to hydrogen cyanide, HCN) similar to that seen in dense interstellar clouds raised the possibility that these molecules might be surviving interstellar material. The preservation of material from the Sun's parent molecular cloud would provide important constraints on the processes that took place in the protostellar nebula. But another possibility is that HNC is produced by photochemical processes in the coma, which means that its abundance could not be used as a direct constraint on conditions in the early Solar System.
View Article and Find Full Text PDFWe present the results of a systematic survey of the chemical properties of two giant molecular cloud (GMC) cores in M17 and Cepheus A. In all, we have mapped the emission from 32 molecular transitions of 13 molecules and seven isotopic variants over a 4' x 5' region in each core. Each map includes known sites of massive star formation, as well as the more extended quiescent material.
View Article and Find Full Text PDFWe present a survey of the distribution of 20 chemical and isotopic molecular species along the central ridge of the Orion molecular cloud from 6' north to 6' south of BN-KL observed with the QUARRY focal plane array on the FCRAO 14 m telescope, which provides an angular resolution of approximately 50" in the 3 mm wavelength region. We use standard tools of multivariate analysis for a systematic investigation of the similarities and differences among the maps of integrated intensities of the 32 lines observed. The maps fall in three broad classes: first, those strongly peaked toward BN-KL; second, those having rather flat distributions along the ridge; and third, those with a clear north-south gradient or contrast.
View Article and Find Full Text PDFMaps of comet C/1995 O1 (Hale-Bopp) in the millimeter-wave emission of the ion HCO+ revealed a local minimum near the nucleus position, with a maximum about 100,000 km in the antisolar direction. These observed features of the HCO+ emission require a low abundance of HCO+ due to enhanced destruction in the inner coma of the comet, within a region of low electron temperature (Te). To set constraints on the formation of HCO+ in the coma, as well as the location and magnitude of the transition to higher Te, the data are compared with the results of ion-molecule chemistry models.
View Article and Find Full Text PDFObservations of comets in the 18-cm OH transitions offer a means to probe gas production, kinematics, and OH excitation in comets. We present initial results of OH observations of comet Hale-Bopp obtained with the NRAO 43 m antenna located in Greenbank, WV. Maps of the emission provide strong constraints on the amount of quenching of the inversion of the OH ground state A-doublet in the coma.
View Article and Find Full Text PDFThe abundance ratio of the isomers HCN and HNC has been investigated in comet Hale-Bopp (C/1995 O1) through observations of the J = 4-3 rotational transitions of both species for heliocentric distances 0.93 < r < 3 AU, both pre- and post-perihelion. After correcting for the optical depth of the stronger HCN line, we find that the column density ratio of HNC/HCN in our telescope beam increases significantly as the comet approaches the Sun.
View Article and Find Full Text PDFVolatile compounds in comets are the most pristine materials surviving from the time of formation of the Solar System, and thus potentially provide information about conditions that prevailed in the primitive solar nebula. Moreover, comets may have supplied a substantial fraction of the volatiles on the terrestrial planets, perhaps including organic compounds that played a role in the origin of life on Earth. Here we report the detection of hydrogen isocyanide (HNC) in comet Hyakutake.
View Article and Find Full Text PDFIn this paper we present nearly simultaneous 1300 microns continuum and J = 2-1 C18O maps of the cores of five molecular clouds, W3, NGC 2264, NGC 6334I, rho Oph, and S140. The purpose of this experiment was to compare these two column density tracers. We find that dust continuum and C18O emission are equally effective tracers of column density in molecular cloud cores and give a good indication of cloud structure.
View Article and Find Full Text PDFWe present observations of the HCN J = 1-0 rotational transition at 3.4 mm wavelength in comet P/Halley. The data were obtained during a total of 56 individual observing sessions between November 1985 and May 1986 and represent the first time that a cometary parent molecule has been so extensively monitored.
View Article and Find Full Text PDFApproximately one-half of the L1551 bipolar outflow was mapped in the J = 1-0 transition of 12CO using the FCRAO 14 m telescope. The data were obtained by heavily oversampling over the beam area and then were reconstructed using a maximum entropy algorithm to obtain images of the high-velocity gas with an angular resolution of approximately 20". The outflow exhibits a striking shell-like structure with the lowest velocity out-flowing gas found along the limb of the outflow, and the highest velocity outflowing gas found along the axis of the outflow.
View Article and Find Full Text PDFWe present observations of the 1300 micron continuum emission and the C18O spectral-line emission from three well-studied giant molecular cloud cores: Orion, W49, and W51. The observations were obtained at the Five College Radio Astronomy Observatory, and they provide a means to examine the consistency of these two methods to trace the column density structure of molecular clouds. We find a good general correlation between the 1300 micron continuum, which traces the column density of dust, and the C18O J = 2 --> 1 line emission, which traces the column density of molecular gas, when the effects of source temperature are taken into consideration.
View Article and Find Full Text PDFWe have carried out a search for the 234 GHz N = 2 --> 0, J = 1 --> 1 transition of 16O18O using the 13.7 m FCRAO radio telescope. No emission was detected toward six giant molecular clouds.
View Article and Find Full Text PDFWe have mapped the J = 1 --> 0 transition of 13CO over a 3 deg2 region in Heiles Cloud 2 using the Five College Radio Astronomy Observatory 14 m telescope. The complete map contains 3600 individual spectra of which 2400 were sampled with 1' spacing. The map suggest that the structure of Heiles Cloud 2 is dominated by a quasi equilibrium rotating ring similar to those found in numerical calculations of the gravitational collapse of a rotating cloud.
View Article and Find Full Text PDFWe have observed emission from HCN, H13CN, HC15N, HN13C, H15NC, HC3N, CH3CN, and possibly CH3NC, and determined an upper limit for NH2CN, toward the cold, dark cloud TMC-1. The abundance ratio [HNC]/[HCN] = 1.55 +/- 0.
View Article and Find Full Text PDF