Publications by authors named "Schlezinger J"

Perfluoroalkyl substances (PFAS) are a major public health concern, in part because several PFAS have elimination half-lives on the order of years and are associated with adverse health outcomes. While PFAS can be transported into bile, their efficient reuptake by intestinal transporter proteins results in minimal fecal elimination. Here, we tested the hypothesis that consumption of oat β-glucan, a dietary supplement known to disrupt the enterohepatic recirculation of bile acids, will reduce PFAS body burdens.

View Article and Find Full Text PDF

Per-and polyfluorinated substances (PFAS) are synthetic chemicals that are used to make fluoropolymer coatings found in many products, such as non-stick pans, clothing, cosmetics, and food packaging. These highly persistent molecules are known as "forever chemicals" since they neither degrade environmentally nor break down enzymatically within biological systems. PFAS compounds readily contaminate water sources, and as a result, certain PFAS molecules have bioaccumulated in exposed species including humans.

View Article and Find Full Text PDF

Background: The purpose of this research was to assess the growth, tolerance, and compliance outcomes associated with the consumption of a hydrolyzed rice infant formula (HRF) enriched with 2'-Fucosyllactose (2'-FL) a Human Milk Oligosaccharide (HMO), and nucleotides in an intended population of infants.

Methods: This was a non-randomized single-group, multicenter study. The study formula was a hypoallergenic HRF with 2'-FL, Docosahexaenoic acid (DHA), Arachidonic acid (ARA), and nucleotides.

View Article and Find Full Text PDF

Conservative estimates by the World Health Organization suggest that at least a quarter of global cardiovascular diseases are attributable to environmental exposures. Associations between air pollution and cardiovascular risk have garnered the most headlines and are strong, but less attention has been paid to other omnipresent toxicants in our ecosystem. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are man-made chemicals that are extensively used in industrial and consumer products worldwide and in aqueous film-forming foam utilized in firefighting.

View Article and Find Full Text PDF

Environmental toxicants (ETs) are associated with adverse health outcomes. Here we hypothesized that exposures to ETs are linked with obesity and insulin resistance partly through a dysbiotic gut microbiota and changes in the serum levels of secondary bile acids (BAs). Serum BAs, per- and polyfluoroalkyl substances (PFAS) and additional twenty-seven ETs were measured by mass spectrometry in 264 Danes (121 men and 143 women, aged 56.

View Article and Find Full Text PDF

Adverse lung outcomes from exposure to per-and polyfluoroalkyl substances (PFAS) are known; however, the mechanism of action is poorly understood. To explore this, human bronchial epithelial cells were grown and exposed to varied concentrations of short-chain (perfluorobutanoic acid, perflurobutane sulfonic acid and GenX) or long-chain (PFOA and perfluorooctane sulfonic acid (PFOS)) PFAS, alone or in a mixture to identify cytotoxic concentrations. Non-cytotoxic concentrations of PFAS from this experiment were selected to assess NLRP3 inflammasome activation and priming.

View Article and Find Full Text PDF

Organofluorines occur in human serum as complex mixtures of known and unidentified compounds. Human biomonitoring traditionally uses targeted analysis to measure the presence of known and quantifiable per- and polyfluoroalkyl substances (PFAS) in serum, yet characterization of exposure to and quantification of PFAS are limited by the availability of methods and analytical standards. Studies comparing extractable organofluorine (EOF) in serum to measured PFAS using organofluorine mass balance show that measurable PFAS only explain a fraction of EOF in human serum and that other sources of organofluorine may exist.

View Article and Find Full Text PDF

Time is a central element of the sexual dimorphic patterns of development, pathology, and aging of the skeleton. Because the transcriptome is a representation of the phenome, we hypothesized that both sex and sex-specific temporal, transcriptomic differences in bone tissues over an 18-month period would be informative to the underlying molecular processes that lead to postnatal sexual dimorphism. Regardless of age, sex-associated changes of the whole bone transcriptomes were primarily associated not only with bone but also vascular and connective tissue ontologies.

View Article and Find Full Text PDF

Human exposure to per- and polyfluoroalkyl substances (PFAS) is ubiquitous, with mixtures of PFAS detected in drinking water, food, household dust, and other exposure sources. Animal toxicity studies and human epidemiology indicate that PFAS may act through shared mechanisms including activation of peroxisome proliferator activated receptor α (PPARα). However, the effect of PFAS mixtures on human relevant molecular initiating events remains an important data gap in the PFAS literature.

View Article and Find Full Text PDF

Background & Aims: Recent experimental models and epidemiological studies suggest that specific environmental contaminants (ECs) contribute to the initiation and pathology of non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms linking EC exposure with NAFLD remain poorly understood and there is no data on their impact on the human liver metabolome. Herein, we hypothesized that exposure to ECs, particularly perfluorinated alkyl substances (PFAS), impacts liver metabolism, specifically bile acid metabolism.

View Article and Find Full Text PDF

Risk factors for poor bone quality include estrogen loss at menopause, a high fat diet and exposures to drugs/chemicals that activate peroxisome proliferator activated receptor gamma (PPARγ). We previously reported that the PPARγ and retinoid X receptor dual ligand, tributyltin (TBT), repressed periosteal bone formation but enhanced trabecular bone formation in vivo. Here, we examined the interaction of diet, ovariectomy (OVX) and TBT exposure on bone structure.

View Article and Find Full Text PDF

The 3T3-L1 murine pre-adipocyte line is an established cell culture model for screening Metabolism Disrupting Chemicals (MDCs). Despite a need to accurately identify MDCs for further evaluation, relatively little research has been performed to comprehensively evaluate reproducibility across laboratories, assess factors that might contribute to varying degrees of differentiation between laboratories (media additives, plastics, cell source, etc.), or to standardize protocols.

View Article and Find Full Text PDF

Background: Chemicals in disparate structural classes activate specific subsets of the transcriptional programs of peroxisome proliferator-activated receptor- () to generate adipocytes with distinct phenotypes.

Objectives: Our objectives were to ) establish a novel classification method to predict ligands and modifying chemicals; and ) create a taxonomy to group chemicals on the basis of their effects on transcriptome and downstream metabolic functions. We tested the hypothesis that environmental adipogens highly ranked by the taxonomy, but segregated from therapeutic ligands, would induce white but not brite adipogenesis.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are pervasive in the environment resulting in nearly universal detection in people. Human serum PFAS concentrations are strongly associated with increased serum low-density lipoprotein cholesterol (LDL-C), and growing evidence suggests an association with serum triacylglycerides (TG). Here, we tested the hypothesis that perfluorooctanoic acid (PFOA) dysregulates liver and serum triacylglycerides in human peroxisome proliferator activated receptor α (hPPARα)-expressing mice fed an American diet.

View Article and Find Full Text PDF

Environmental exposures often occur in complex mixtures and at low concentrations. Generalized concentration addition (GCA) is a method used to estimate the joint effect of receptor ligands that vary in efficacy. GCA models have been successfully applied to mixtures of aryl hydrocarbon receptor (AhR) and peroxisome proliferator-activated receptor gamma (PPARγ) ligands, each of which can be modeled as a receptor with a single binding site.

View Article and Find Full Text PDF

Humans are exposed to per- and polyfluoroalkyl substances (PFAS) in their drinking water, food, air, dust, and by direct use of consumer products. Increased concentrations of serum total cholesterol and low density lipoprotein cholesterol are among the endpoints best supported by epidemiology. The objectives of this study were to generate a new model for examining PFAS-induced dyslipidemia and to conduct molecular studies to better define mechanism(s) of action.

View Article and Find Full Text PDF

Concentration/dose addition is widely used for compounds that act by similar mechanisms. But it cannot make predictions for mixtures of full and partial agonists for effect levels above that of the least efficacious component. As partial agonists are common, we developed generalized concentration addition, which has been successfully applied to systems in which ligands compete for a single binding site.

View Article and Find Full Text PDF

Triphenyl phosphate (TPhP) is an environmental PPARγ ligand, and growing evidence suggests that it is a metabolic disruptor. We have shown previously that the structurally similar ligand, tributyltin, does not induce brite adipocyte gene expression. Here, using in vivo and in vitro models, we tested the hypothesis that TPhP is a selective PPARγ ligand, which fails to induce brite adipogenesis.

View Article and Find Full Text PDF

3T3-L1 pre-adipocytes are used commonly to identify new adipogens, but this cell line has been shown to produce variable results. Here, potential adipogenic chemicals (identified in the ToxCast dataset using the Toxicological Priority Index) were tested for their ability to induce adipocyte differentiation in 3T3-L1 cells, OP9 cells and primary mouse bone marrow multipotent stromal cells (BM-MSC). Ten of the 36 potential adipogens stimulated lipid accumulation in at least one model (novel: fenthion, quinoxyfen, prallethrin, allethrin, pyrimethanil, tebuconzaole, 2,4,6-tris (tert-butyl)phenol; known: fentin, pioglitazone, 3,3',5,5'-tetrabromobisphenol A).

View Article and Find Full Text PDF
Article Synopsis
  • Tributyltin (TBT) and dioxin-like PCBs are highly toxic contaminants found in New Bedford Harbor that can harm fish, particularly Atlantic killifish, which have developed some tolerance to these toxins.
  • Research shows that exposure to TBT caused deformities in the caudal fins of killifish embryos, with significant gene expression changes noted in PCB-sensitive fish, but not in PCB-tolerant fish from the harbor.
  • PCB126 co-exposure did not worsen the effects of TBT on fin deformities and even led to increased expression of the pparg gene in PCB-sensitive killifish, indicating complex interactions between these contaminants and their pathways.
View Article and Find Full Text PDF

Concentration addition/dose addition (CA) has proved to be a powerful tool for estimating the combined effect of mixtures that act by similar mechanisms. We earlier proposed generalized concentration addition (GCA) to deal with the inability of CA to estimate effects of mixtures above the level of the least efficacious component. GCA requires specifying mathematical concentration response functions for each mixture component that must be invertible, yielding real numbers.

View Article and Find Full Text PDF

Background: Humans are exposed to a complex mixture of environmental chemicals that impact bone and metabolic health, and traditional exposure assessments struggle to capture these exposure scenarios. Peroxisome proliferator activated receptor-gamma (PPARγ) is an essential regulator of metabolic and bone homeostasis, and its inappropriate activation by environmental chemicals can set the stage for adverse health effects. Here, we present the development of the Serum PPARγ Activity Assay (SPAA), a simple and cost-effective method to measure total ligand activity in small volumes of serum.

View Article and Find Full Text PDF

Sentinel species such as the Atlantic killifish (Fundulus heteroclitus) living in urban waterways can be used as toxicological models to understand impacts of environmental metabolism disrupting compound (MDC) exposure on both wildlife and humans. Exposure to MDCs is associated with increased risk of metabolic syndrome, including impaired lipid and glucose homeostasis, adipogenesis, appetite control, and basal metabolism. MDCs are ubiquitous in the environment, including in aquatic environments.

View Article and Find Full Text PDF