Publications by authors named "Schleussner C"

Due to insufficient climate action over the past decade, it is increasingly likely that 1.5 °C of global warming will be exceeded - at least temporarily - in the 21 century. Such a temporary temperature overshoot carries additional climate risks which are poorly understood.

View Article and Find Full Text PDF

Background: Land-use and land-cover change (LULCC) can substantially affect climate through biogeochemical and biogeophysical effects. Here, we examine the future temperature-mortality impact for two contrasting LULCC scenarios in a background climate of low greenhouse gas concentrations. The first LULCC scenario implies a globally sustainable land use and socioeconomic development (sustainability).

View Article and Find Full Text PDF
Article Synopsis
  • * There are big differences in climate risks if we exceed temperature limits versus if we stay within them, including effects on sea levels and ice.
  • * To prevent dangerous climate changes, we need to find ways to remove a lot of carbon dioxide from the atmosphere, but this could be hard and expensive to do, meaning we need to act quickly to cut emissions instead.
View Article and Find Full Text PDF

Under current emission trajectories, temporarily overshooting the Paris global warming limit of 1.5 °C is a distinct possibility. Permanently exceeding this limit would substantially increase the probability of triggering climate tipping elements.

View Article and Find Full Text PDF

Climate change adaptation is paramount, but increasing evidence suggests that adaptation action is subject to a range of constraints. For a realistic assessment of future adaptation prospects, it is crucial to understand the timescales needed to overcome these constraints. Here, we combine data on documented adaptation from the Global Adaptation Mapping Initiative with national macro indicators and assess future changes in adaptation constraints alongside the Shared Socioeconomic Pathways, spanning a wide range of future socio-economic development scenarios.

View Article and Find Full Text PDF

To obtain a better understanding of the biology behind life-threatening fungal infections caused by Candida albicans, we recently conducted an in silico screening for fungal and host protein interaction partners. We report here that the extracellular domain of human CD4 binds to the moonlighting protein enolase 1 (Eno1) of C. albicans as predicted bioinformatically.

View Article and Find Full Text PDF

Simultaneous harvest failures across major crop-producing regions are a threat to global food security. Concurrent weather extremes driven by a strongly meandering jet stream could trigger such events, but so far this has not been quantified. Specifically, the ability of state-of-the art crop and climate models to adequately reproduce such high impact events is a crucial component for estimating risks to global food security.

View Article and Find Full Text PDF

Climate change can substantially affect temperature-related mortality and morbidity, especially under high green-house gas emission pathways. Achieving the Paris Agreement goals require not only drastic reductions in fossil fuel-based emissions but also land-use and land-cover changes (LULCC), such as reforestation and afforestation. LULCC has been mainly analysed in the context of land-based mitigation and food security.

View Article and Find Full Text PDF

Transformation pathways for the land sector in line with the Paris Agreement depend on the assumption of globally implemented greenhouse gas (GHG) emission pricing, and in some cases also on inclusive socio-economic development and sustainable land-use practices. In such pathways, the majority of GHG emission reductions in the land system is expected to come from low- and middle-income countries, which currently account for a large share of emissions from agriculture, forestry and other land use (AFOLU). However, in low- and middle-income countries the economic, financial and institutional barriers for such transformative changes are high.

View Article and Find Full Text PDF

High-level assessments of climate change impacts aggregate multiple perils into a common framework. This requires incorporating multiple dimensions of uncertainty. Here we propose a methodology to transparently assess these uncertainties within the 'Reasons for Concern' framework, using extreme heat as a case study.

View Article and Find Full Text PDF

Background: Although effects on labour is one of the most tangible and attributable climate impact, our quantification of these effects is insufficient and based on weak methodologies. Partly, this gap is due to the inability to resolve different impact channels, such as changes in time allocation (labour supply) and slowdown of work (labour productivity). Explicitly resolving those in a multi-model inter-comparison framework can help to improve estimates of the effects of climate change on labour effectiveness.

View Article and Find Full Text PDF

Gender inequalities are reflected in differential vulnerability, and exposure to the hazards posed by climate change and addressing them is key to increase the adaptive capacities of societies. We provide trajectories of the Gender Inequality Index (GII) alongside the Shared-Socioeconomic Pathways (SSPs), a scenario framework widely used in climate science. Here we find that rapid improvements in gender inequality are possible under a sustainable development scenario already in the near-term.

View Article and Find Full Text PDF

The main contributors to sea-level rise (oceans, glaciers, and ice sheets) respond to climate change on timescales ranging from decades to millennia. A focus on the 21st century thus fails to provide a complete picture of the consequences of anthropogenic greenhouse gas emissions on future sea-level rise and its long-term impacts. Here we identify the committed global mean sea-level rise until 2300 from historical emissions since 1750 and the currently pledged National Determined Contributions (NDC) under the Paris Agreement until 2030.

View Article and Find Full Text PDF

The Paris Agreement binds all nations to undertake ambitious efforts to combat climate change, with the commitment to Bhold warming well below 2 °C in global mean temperature (GMT), relative to pre-industrial levels, and to pursue efforts to limit warming to 1.5 °C". The 1.

View Article and Find Full Text PDF

The United Nations' Paris Agreement includes the aim of pursuing efforts to limit global warming to only 1.5 °C above pre-industrial levels. However, it is not clear what the resulting climate would look like across the globe and over time.

View Article and Find Full Text PDF

The Agricultural Model Intercomparison and Improvement Project (AgMIP) has developed novel methods for Coordinated Global and Regional Assessments (CGRA) of agriculture and food security in a changing world. The present study aims to perform a proof of concept of the CGRA to demonstrate advantages and challenges of the proposed framework. This effort responds to the request by the UN Framework Convention on Climate Change (UNFCCC) for the implications of limiting global temperature increases to 1.

View Article and Find Full Text PDF

This article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.

View Article and Find Full Text PDF

Sea-level rise is a major consequence of climate change that will continue long after emissions of greenhouse gases have stopped. The 2015 Paris Agreement aims at reducing climate-related risks by reducing greenhouse gas emissions to net zero and limiting global-mean temperature increase. Here we quantify the effect of these constraints on global sea-level rise until 2300, including Antarctic ice-sheet instabilities.

View Article and Find Full Text PDF

Limiting global warming to 1.5 or 2.0°C requires strong mitigation of anthropogenic greenhouse gas (GHG) emissions.

View Article and Find Full Text PDF