Publications by authors named "Schlessinger J"

The crystal structure of the phosphotyrosine-binding domain (PTB) of the X11 protein has been determined, in complex with unphosphorylated peptides corresponding to a region of beta-amyloid precursor protein (betaAPP) that is required for receptor internalization. The mode of binding to X11 of the unphosphorylated peptides, which contain an NPxY motif, resembles that of phosphorylated peptides bound to the Shc and IRS-1 PTB domains. Eight peptide residues make specific contacts with the X11 PTB domain, and they collectively achieve high affinity (KD = 0.

View Article and Find Full Text PDF

The signaling events which mediate activation of c-Jun N-terminal kinase (JNK) are not yet well characterized. To broaden our understanding of upstream mediators which link extracellular signals to the JNK pathway, we investigated the role of phosphatidylinositol (PI) 3-kinase in epidermal growth factor (EGF)-mediated JNK activation. In this report we demonstrate that a dominant negative form of PI 3-kinase as well as the inhibitor wortmannin blocks EGF-induced JNK activation dramatically.

View Article and Find Full Text PDF

We studied the dimerization of the recombinant soluble extracellular domain of the epidermal growth factor receptor (sEGFR) in response to EGF-binding using multi-angle laser light scattering with size exclusion chromatography (SEC-MALLS). In the absence of EGF, sEGFR behaved as a monomer. However, upon EGF-binding, sEGFR formed a dimer with the stoichiometry of two EGF molecules bound to two sEGFR molecules [(EGF)2-(sEGFR)2].

View Article and Find Full Text PDF

Activation of the Ras/MAPK signaling cascade is essential for growth factor-induced cell proliferation and differentiation. In this report, we describe the purification, cloning, and characterization of a novel protein, designated FRS2, that is tyrosine phosphorylated and binds to Grb2/Sos in response to FGF or NGF stimulation. We find that FRS2 is myristylated and that this modification is essential for membrane localization, tyrosine phosphorylation, Grb2/Sos recruitment, and MAPK activation.

View Article and Find Full Text PDF

The Met/Hepatocyte Growth Factor (HGF) receptor tyrosine kinase is oncogenically activated through a rearrangement that creates a hybrid gene Tpr-Met. The resultant chimeric p65(Tpr-Met) protein is constitutively phosphorylated on tyrosine residues in vivo and associates with a number of SH2-containing signaling molecules including the p85 subunit of PI-3 kinase and the Grb2 adaptor protein, which couples receptor tyrosine kinases to the Ras signaling pathway. Mutation of the binding site for Grb2 impairs the ability of Tpr-Met oncoprotein to transform fibroblasts, suggesting that the activation of the Ras/MAP kinase signaling pathway through Grb2 may be essential for cellular transformation.

View Article and Find Full Text PDF

A new class of protein tyrosine kinase inhibitors was identified that is based on an oxindole core (indolinones). Two compounds from this class inhibited the kinase activity of fibroblast growth factor receptor 1 (FGFR1) and showed differential specificity toward other receptor tyrosine kinases. Crystal structures of the tyrosine kinase domain of FGFR1 in complex with the two compounds were determined.

View Article and Find Full Text PDF

The Src family protein tyrosine kinases (PTKs), Lck and Fyn, are coexpressed in T cells and perform crucial functions involved in the initiation of T cell antigen receptor (TCR) signal transduction. However, the mechanisms by which Lck and Fyn regulate TCR signaling are still not completely understood. One important question is whether Lck and Fyn have specific targets or only provide functional redundancy during TCR signaling.

View Article and Find Full Text PDF

Dynamin plays a key role in the scission event common to various types of endocytosis. We demonstrate that the pleckstrin homology (PH) domain of dynamin-1 is critical in the process of rapid endocytosis (RE) in chromaffin cells. Introduction of this isolated PH domain into cells at concentrations as low as 1 microM completely suppressed RE.

View Article and Find Full Text PDF

Most growth factors and cytokines activate their receptors by inducing dimerization upon binding. We have studied binding of the dimeric cytokine stem cell factor (SCF) to the extracellular domain of its receptor Kit, which is a receptor tyrosine kinase similar to the receptors for platelet-derived growth factor and colony-stimulating factor-1. Calorimetric studies show that one SCF dimer binds simultaneously to two molecules of the Kit extracellular domain.

View Article and Find Full Text PDF

To assess the role of tyrosine phosphorylation/dephosphorylation balance in synaptic transmission, a set of studies was implemented at the squid giant synapse. Presynaptic induction of tyrosine phosphorylation, following administration of the tyrosine phosphatase inhibitor pervanadate, produced a sizable increase in presynaptic calcium current and a concomitant and paradoxical decrement of the postsynaptic potential amplitude. Presynaptic microinjection of an active protein tyrosine kinase dramatically increased calcium currents and incremented postsynaptic potential amplitude.

View Article and Find Full Text PDF

Receptor protein tyrosine phosphatase beta (RPTPbeta) expressed on the surface of glial cells binds to the glycosylphosphatidylinositol (GPI)-anchored recognition molecule contactin on neuronal cells leading to neurite outgrowth. We describe the cloning of a novel contactin-associated transmembrane receptor (p190/Caspr) containing a mosaic of domains implicated in protein-protein interactions. The extracellular domain of Caspr contains a neurophilin/coagulation factor homology domain, a region related to fibrinogen beta/gamma, epidermal growth factor-like repeats, neurexin motifs as well as unique PGY repeats found in a molluscan adhesive protein.

View Article and Find Full Text PDF

Receptor protein tyrosine phosphatase beta (RPTPbeta) is expressed as soluble and receptor forms with common extracellular regions consisting of a carbonic anhydrase domain (C), a fibronectin type III repeat (F), and a unique region called S. We showed previously that a recombinant Fc fusion protein with the C domain (beta C) binds to contactin and supports neuronal adhesion and neurite growth. As a substrate, betaCFS was less effective in supporting cell adhesion, but it was a more effective promoter of neurite outgrowth than betaCF.

View Article and Find Full Text PDF

Receptor dimerization is generally considered to be the primary signaling event upon binding of a growth factor to its receptor at the cell surface. Little, however, is known about the precise molecular details of ligand-induced receptor dimerization, except for studies of the human growth hormone (hGH) receptor. We have analyzed the binding of epidermal growth factor (EGF) to the extracellular domain of its receptor (sEGFR) using titration calorimetry, and the resulting dimerization of sEGFR using small-angle X-ray scattering.

View Article and Find Full Text PDF

The tyrosine kinase receptor for macrophage colony-stimulating factor and the non-receptor tyrosine kinase c-Src play critical roles in osteoclast differentiation and function. Since the ubiquitously expressed adaptor protein Grb2 plays an important role in several tyrosine kinase signal transduction pathways, we used a filter binding assay to identify osteoclast proteins that bind to Grb2. In osteoclasts, there were three major Grb2-binding proteins, two of which, mSos and c-Cbl (p120), have been previously identified as Grb2-binding proteins in many cell types.

View Article and Find Full Text PDF

The roles of heparan sulfate proteoglycans and tyrosine kinase fibroblast growth factor (FGF) receptors in mediating the induction of plasminogen activator (PA) by FGF-2 were investigated using L6 myoblast cells that normally do not express detectable FGF receptors. PA was induced by FGF-2 in a dose-dependent manner in L6 cells expressing transfected FGF receptor-1 but not in nontransfected cells or cells transfected with the vector alone. The PA produced in these cells was characterized as urokinase-type PA (uPA).

View Article and Find Full Text PDF

The mechanisms by which mitogenic G-protein-coupled receptors activate the MAP kinase signalling pathway are poorly understood. Candidate protein tyrosine kinases that link G-protein-coupled receptors with MAP kinase include Src family kinases, the epidermal growth factor receptor, Lyn and Syk. Here we show that lysophosphatidic acid (LPA) and bradykinin induce tyrosine phosphorylation of Pyk2 and complex formation between Pyk2 and activated Src.

View Article and Find Full Text PDF

Nck is an adaptor protein composed of a single SH2 domain and three SH3 domains. Upon growth factor stimulation, Nck is recruited to receptor tyrosine kinases via its SH2 domain, probably initiating one or more signaling cascades. In this report, we show that Nck is bound in living cells to the serine-threonine kinase Pak1.

View Article and Find Full Text PDF

The crystal structure of the tyrosine kinase domain of fibroblast growth factor receptor 1 (FGFR1K) has been determined in its unliganded form to 2.0 angstroms resolution and in complex with with an ATP analog to 2.3 angstrosms A resolution.

View Article and Find Full Text PDF

The c-Jun amino-terminal kinase (JNK) is activated by various heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors, inflammatory cytokines, and stress signals. Yet, upstream mediators that link extracellular signals with the JNK signaling pathway are currently unknown. The tyrosine kinase Pyk2 was activated by tumor necrosis factor alpha, by ultraviolet irradiation, and by changes in osmolarity.

View Article and Find Full Text PDF

In situ hybridization and Northern analysis demonstrate that the three splicing variants of RPTP-beta have different spatial and temporal patterns of expression in the developing brain. The 9.5-kb and 6.

View Article and Find Full Text PDF

The Drosophila insulin receptor (DIR) contains a 368-amino-acid COOH-terminal extension that contains several tyrosine phosphorylation sites in YXXM motifs. This extension is absent from the human insulin receptor but resembles a region in insulin receptor substrate (IRS) proteins which binds to the phosphatidylinositol (PI) 3-kinase and mediates mitogenesis. The function of a chimeric DIR containing the human insulin receptor binding domain (hDIR) was investigated in 32D cells, which contain few insulin receptors and no IRS proteins.

View Article and Find Full Text PDF