Unlabelled: Focal adhesion kinase (FAK) functions as a signaling and scaffolding protein within endothelial cells (ECs) impacting blood vessel function and tumor growth. Interpretations of EC FAK-null phenotypes are complicated by related PYK2 (protein tyrosine kinase 2) expression, and to test this, we created PYK2 FAK mice with tamoxifen-inducible EC-specific Cre recombinase expression. At 11 weeks of age, EC FAK inactivation resulted in increased heart and lung mass and vascular leakage only on a PYK2 background.
View Article and Find Full Text PDFBackground: AbobotulinumtoxinA has become well established as a treatment option for moderate to severe glabellar lines since its first aesthetic approval in 2009.
Objective: Pivotal trials leading to regulatory approval showed that abobotulinumtoxinA treatment was associated with high responder rates when defined as achievement of none or mild glabellar lines (0 or 1 on the glabellar line severity scale) and a duration of action of up to 5 months. More recently, the goals for treatment of glabellar lines have shifted toward not only achieving a decrease in glabellar line severity but also ensuring that patients are satisfied with their experience.
Many growth factors and cytokines signal by binding to the extracellular domains of their receptors and driving association and transphosphorylation of the receptor intracellular tyrosine kinase domains, initiating downstream signaling cascades. To enable systematic exploration of how receptor valency and geometry affect signaling outcomes, we designed cyclic homo-oligomers with up to 8 subunits using repeat protein building blocks that can be modularly extended. By incorporating a de novo-designed fibroblast growth factor receptor (FGFR)-binding module into these scaffolds, we generated a series of synthetic signaling ligands that exhibit potent valency- and geometry-dependent Ca release and mitogen-activated protein kinase (MAPK) pathway activation.
View Article and Find Full Text PDFHigh-grade neuroendocrine cervical cancers (NETc) are exceedingly rare, highly aggressive tumors. We analyzed 64 NETc tumor samples by whole-exome sequencing (WES). Human papillomavirus DNA was detected in 65.
View Article and Find Full Text PDFGrowth factors and cytokines signal by binding to the extracellular domains of their receptors and drive association and transphosphorylation of the receptor intracellular tyrosine kinase domains, initiating downstream signaling cascades. To enable systematic exploration of how receptor valency and geometry affects signaling outcomes, we designed cyclic homo-oligomers with up to 8 subunits using repeat protein building blocks that can be modularly extended. By incorporating a designed fibroblast growth-factor receptor (FGFR) binding module into these scaffolds, we generated a series of synthetic signaling ligands that exhibit potent valency- and geometry-dependent Ca2+ release and MAPK pathway activation.
View Article and Find Full Text PDFIntroduction: Uterine leiomyosarcomas (uLMS) are rare, highly aggressive tumors. Up to 30% of uLMS may harbor gain of function (GOF) in the MAP2K4 gene, important for tumor cell proliferation, differentiation and metastasis. We investigated the in vivo activity of a novel MAP2K4 inhibitor, PLX8725, against uLMS harboring MAP2K4 gene-amplification.
View Article and Find Full Text PDFWhile important insights were gained about how FGF21 and other endocrine fibroblast growth factors (FGFs) bind to Klotho proteins, the exact mechanism of Klotho/FGF receptor assembly that drives receptor dimerization and activation has not been elucidated. The prevailing dogma is that Klotho proteins substitute for the loss of heparan sulfate proteoglycan (HSPG) binding to endocrine FGFs by high-affinity binding of endocrine FGF molecules to Klotho receptors. To explore a potential role of HSPG in FGF21 signaling, we have analyzed the dynamic properties of FGF21-induced FGF21-βKlotho-FGFR1c complexes on the surface of living wild-type (WT) or HSPG-deficient Chinese hamster ovary (CHO) cells by employing quantitative single-molecule fluorescence imaging analyses.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2022
The phosphoinositide-3 kinase (PI-3K)/AKT cell survival pathway is an important pathway activated by EGFR signaling. Here we show, that in addition to previously described critical components of this pathway, i.e.
View Article and Find Full Text PDFProbe molecules that covalently modify the JAK2 pseudokinase domain (JH2) are reported. Selective targeting of JH2 domains over the kinase (JH1) domains is a necessary feature for ligands intended to evaluate JH2 domains as therapeutic targets. The JH2 domains of three Janus kinases (JAK1, JAK2, and TYK2) possess a cysteine residue in the catalytic loop that does not occur in their JH1 domains.
View Article and Find Full Text PDFJAK2 is a non-receptor tyrosine kinase that regulates hematopoiesis through the JAK-STAT pathway. The pseudokinase domain (JH2) is an important regulator of the activity of the kinase domain (JH1). V617F mutation in JH2 has been associated with the pathogenesis of various myeloproliferative neoplasms, but JAK2 JH2 has been poorly explored as a pharmacological target.
View Article and Find Full Text PDFBackground: Collagen-rich fibrous septae and subcutaneous adipose protrusions play a role in cellulite pathophysiology. Collagenase clostridium histolyticum-aaes (CCH-aaes) injection causes enzymatic release of septae to resolve cellulite depressions and create a skin smoothing effect. This analysis pooled data from two identically designed, phase-3, randomized, double-blind, placebo-controlled studies to examine the efficacy and safety of CCH-aaes.
View Article and Find Full Text PDFThe Janus kinase 2 (JAK2) pseudokinase domain (JH2) is an ATP-binding domain that regulates the activity of the catalytic tyrosine kinase domain (JH1). Dysregulation of JAK2 JH1 signaling caused by the V617F mutation in JH2 is implicated in various myeloproliferative neoplasms. To explore if JAK2 activity can be modulated by a small molecule binding to the ATP site in JH2, we have developed several ligand series aimed at selectively targeting the JAK2 JH2 domain.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2022
Augmentor α and β (Augα and Augβ) are newly discovered ligands of the receptor tyrosine kinases Alk and Ltk. Augα functions as a dimeric ligand that binds with high affinity and specificity to Alk and Ltk. However, a monomeric Augα fragment and monomeric Augβ also bind to Alk and potently stimulate cellular responses.
View Article and Find Full Text PDFAnaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase (RTK) that regulates important functions in the central nervous system. The ALK gene is a hotspot for chromosomal translocation events that result in several fusion proteins that cause a variety of human malignancies. Somatic and germline gain-of-function mutations in ALK were identified in paediatric neuroblastoma.
View Article and Find Full Text PDF