Publications by authors named "Schleimann M"

There are two known mechanisms by which natural killer (NK) cells recognize and kill diseased targets: (i) direct killing and (ii) antibody-dependent cell-mediated cytotoxicity (ADCC). We investigated an indirect NK cell activation strategy for the enhancement of human NK cell killing function. We did this by leveraging the fact that toll-like receptor 9 (TLR9) agonism within pools of human peripheral blood mononuclear cells (PBMCs) results in a robust interferon signaling cascade that leads to NK cell activation.

View Article and Find Full Text PDF

Background: SARS-CoV-2 remains a world-wide health issue. SARS-CoV-2-specific immunity is induced upon both infection and vaccination. However, defining the long-term immune trajectory, especially after infection, is limited.

View Article and Find Full Text PDF

Throughout the COVID-19 pandemic, several variants of concern (VoC) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have evolved, affecting the efficacy of the approved COVID-19 vaccines. To address the need for vaccines that induce strong and persistent cross-reactive neutralizing antibodies and T cell responses, we developed a prophylactic SARS-CoV-2 vaccine candidate based on our easily and rapidly adaptable plasmid DNA vaccine platform. The vaccine candidate, referred to here as VB2129, encodes a protein homodimer consisting of the receptor binding domain (RBD) from lineage B.

View Article and Find Full Text PDF

Despite development of effective SARS-CoV-2 vaccines, a sub-group of vaccine non-responders depends on therapeutic antibodies or small-molecule drugs in cases of severe disease. However, perpetual viral evolution has required continuous efficacy monitoring as well as exploration of new therapeutic antibodies, to circumvent resistance mutations arising in the viral population. We performed SARS-CoV-2-specific B cell sorting and subsequent single-cell sequencing on material from 15 SARS-CoV-2 convalescent participants.

View Article and Find Full Text PDF

Inducing antiretroviral therapy (ART)-free virological control is a critical step toward a human immunodeficiency virus type 1 (HIV-1) cure. In this phase 2a, placebo-controlled, double-blinded trial, 43 people (85% males) with HIV-1 on ART were randomized to (1) placebo/placebo, (2) lefitolimod (TLR9 agonist)/placebo, (3) placebo/broadly neutralizing anti-HIV-1 antibodies (bNAbs) or (4) lefitolimod/bNAb. ART interruption (ATI) started at week 3.

View Article and Find Full Text PDF

Background: In individuals with malignancy or HIV-1 infection, antigen-specific cytotoxic T lymphocytes (CTLs) often display an exhausted phenotype with impaired capacity to eliminate the disease. Existing cell-based immunotherapy strategies are often limited by the requirement for adoptive transfer of CTLs. We have developed an immunotherapy technology in which potent CTL responses are generated in vivo by vaccination and redirected to eliminate target cells using a bispecific Redirector of Vaccine-induced Effector Responses (RoVER).

View Article and Find Full Text PDF

Human plasmacytoid dendritic cells (pDCs) play a central role in initiating and activating host immune responses during infection. To understand how the transcriptome of pDCs is impacted by HIV-1 infection and exogenous stimulation, we isolated pDCs from healthy controls, people with HIV-1 (PWH) before and during toll-like receptor 9 (TLR9) agonist treatment and performed single-cell (sc)-RNA sequencing. Our cluster analysis revealed four pDC clusters: pDC1, pDC2, cytotoxic-like pDC and an exhausted pDC cluster.

View Article and Find Full Text PDF

Adoptive immunotherapy using chimeric antigen receptor (CAR) T cells has been highly successful in treating B cell malignancies and holds great potential as a curative strategy for HIV infection. Recent advances in the use of anti-HIV broadly neutralizing antibodies (bNAbs) have provided vital information for optimal antigen targeting of CAR T cells. However, CD4+ CAR T cells are susceptible to HIV infection, limiting their therapeutic potential.

View Article and Find Full Text PDF

In simian-human immunodeficiency virus (SHIV)-infected non-human primates, broadly neutralizing antibodies (bNAbs) against the virus appear to stimulate T cell immunity. To determine whether this phenomenon also occurs in humans we measured HIV-1-specific cellular immunity longitudinally in individuals with HIV-1 starting antiviral therapy (ART) with or without adjunctive bNAb 3BNC117 treatment. Using the activation-induced marker (AIM) assay and interferon-γ release, we observe that frequencies of Pol- and Gag-specific CD8 T cells, as well as Gag-induced interferon-γ responses, are significantly higher among individuals that received adjunctive 3BNC117 compared to ART-alone at 3 and 12 months after starting ART.

View Article and Find Full Text PDF

The SARS-CoV-2 pandemic has, as of July 2022, infected more than 550 million people and caused over 6 million deaths across the world. COVID-19 vaccines were quickly developed to protect against severe disease, hospitalization and death. In the present study, we performed a direct comparative analysis of four COVID-19 vaccines: BNT162b2 (Pfizer/BioNTech), mRNA-1273 (Moderna), ChAdOx1 (Oxford/AstraZeneca) and Ad26.

View Article and Find Full Text PDF

Attempts to reduce the human immunodeficiency virus type 1 (HIV-1) reservoir and induce antiretroviral therapy (ART)-free virologic control have largely been unsuccessful. In this phase 1b/2a, open-label, randomized controlled trial using a four-group factorial design, we investigated whether early intervention in newly diagnosed people with HIV-1 with a monoclonal anti-HIV-1 antibody with a CD4-binding site, 3BNC117, followed by a histone deacetylase inhibitor, romidepsin, shortly after ART initiation altered the course of HIV-1 infection ( NCT03041012 ). The trial was undertaken in five hospitals in Denmark and two hospitals in the United Kingdom.

View Article and Find Full Text PDF

Genetic polymorphisms at the loci are known to influence the clinical outcome of several different infectious diseases. Best described is the association between the genotype and hepatitis C virus clearance. However, an influence of the genotype on the adaptive immune system was suggested by several studies but never investigated in humans.

View Article and Find Full Text PDF

We report a coronavirus disease 2019 case with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) persisting beyond 333 days in an immunocompromised patient with chronic lymphocytic leukemia, asymptomatically carrying infectious SARS-CoV-2 at day 197 postdiagnosis. In addition, viral sequencing indicates major changes in the spike protein over time, temporally associated with convalescent plasma treatment.

View Article and Find Full Text PDF

Background: The SARS-CoV-2 pandemic currently prevails worldwide. To understand the immunological signature of SARS-CoV-2 infections and aid the search and evaluation of new treatment modalities and vaccines, comprehensive characterization of adaptive immune responses towards SARS-CoV-2 is needed.

Methods: We included 203 recovered SARS-CoV-2 infected patients in Denmark between April 3 and July 9 2020, at least 14 days after COVID-19 symptom recovery.

View Article and Find Full Text PDF

Background: Upon SARS-CoV-2 infection, most individuals develop neutralizing antibodies and T-cell immunity. However, some individuals reportedly remain SARS-CoV-2 PCR positive by pharyngeal swabs weeks after recovery. Whether viral RNA in these persistent carriers is contagious and stimulates SARS-CoV-2-specific immune responses is unknown.

View Article and Find Full Text PDF

An emerging paradigm suggests that gut glycosylation is a key force in maintaining the homeostatic relationship between the gut and its microbiota. Nevertheless, it is unclear how gut glycosylation contributes to the HIV-associated microbial translocation and inflammation that persist despite viral suppression and contribute to the development of several comorbidities. We examined terminal ileum, right colon, and sigmoid colon biopsies from HIV-infected virally-suppressed individuals and found that gut glycomic patterns are associated with distinct microbial compositions and differential levels of chronic inflammation and HIV persistence.

View Article and Find Full Text PDF

Background: TLR9 agonists are being developed as immunotherapy against malignancies and infections. TLR9 is primarily expressed in B cells and plasmacytoid dendritic cells (pDCs). TLR9 signalling may be critically important for B cell activity in lymph nodes but little is known about the in vivo impact of TLR9 agonism on human lymph node B cells.

View Article and Find Full Text PDF

Design: This was an exploratory, single-arm clinical trial that tested the immune enhancement effects of 24-weeks of Toll-like receptor 9 (TLR9) agonist (MGN1703; Lefitolimod; 60 mg × 2 weekly) therapy.

Methods: We enrolled HIV-1-infected individuals on suppressive combination antiretroviral therapy. Safety was assessed throughout the study.

View Article and Find Full Text PDF

Objective: Therapeutic HIV-1 immunization followed by latency reversal has been suggested as a strategy to eradicate HIV-1. Here we investigate the phylogenetic composition of the HIV-1 regions targeted by the therapeutic HIV-1 peptide vaccine Vacc-4x in participants in a clinical trial.

Design: Seventeen participants on suppressive antiretroviral therapy were vaccinated with six doses of Vacc-4x followed by three doses of romidepsin.

View Article and Find Full Text PDF

We report a case of an adolescent who presented at our emergency department with acute abdominal pain. While the initial diagnosis was acute appendicitis, a secondary and coincidental diagnosis of primary HIV-1 infection was made. Concurrent and subsequent clinical and molecular biology findings form the basis of our argument that primary HIV-1 infection was the cause of acute appendicitis in this individual.

View Article and Find Full Text PDF

Toll-like receptor 9 (TLR9) agonists are being developed for treatment of colorectal and other cancers, yet the impact of these drugs on human intestines remains unknown. This, together with the fact that there are additional potential indications for TLR9 agonist therapy (e.g.

View Article and Find Full Text PDF

Background.: Treatment with latency reversing agents (LRAs) enhances human immunodeficiency virus type 1 (HIV-1) transcription in vivo but leads to only modest reductions in the size of the reservoir, possibly due to insufficient immune-mediated elimination of infected cells. We hypothesized that a single drug molecule-a novel Toll-like receptor 9 (TLR9) agonist, MGN1703-could function as an enhancer of innate immunity and an LRA in vivo.

View Article and Find Full Text PDF

Introduction: Immune cells utilize acetylcholine as a paracrine-signaling molecule. Many white blood cells express components of the cholinergic signaling pathway, and these are up-regulated when immune cells are activated. However, in vivo molecular imaging of cholinergic signaling in the context of inflammation has not previously been investigated.

View Article and Find Full Text PDF

Background: Immune priming before reversal of latency might be a component of a functional HIV cure. To assess this concept, we assessed if therapeutic HIV immunisation followed by latency reversal would affect measures of viral transcription, plasma viraemia, and reservoir size in patients with HIV on suppressive antiretroviral therapy.

Methods: In this single-arm, phase 1B/2A trial, we recruited adults treated at the Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark (aged ≥18 years) with successfully treated HIV-1 with plasma RNA loads of less than 50 copies per mL for the previous year and CD4 counts of at least 500 cells per μL.

View Article and Find Full Text PDF