Fungal diseases, caused mainly by spp., are past and current threats to Northern Wild Rice (NWR) grain production and germplasm preservation in both natural and cultivated settings. Genetic resistance against the pathogen is scarce.
View Article and Find Full Text PDFModern agriculture often relies on large inputs of synthetic fertilizers to maximize crop yield potential, yet their intensive use has led to nutrient losses and impaired soil health. Alternatively, manure amendments provide plant available nutrients, build organic carbon, and enhance soil health. However, we lack a clear understanding of how consistently manure impacts fungal communities, the mechanisms via which manure impacts soil fungi, and the fate of manure-borne fungi in soils.
View Article and Find Full Text PDFLiming is an effective agricultural practice and is broadly used to ameliorate soil acidification in agricultural ecosystems. Our understanding of the impacts of lime application on the soil fungal community is scarce. In this study, we explored the responses of fungal communities to liming at two locations with decreasing soil pH in Oregon in the Pacific Northwest using high-throughput sequencing (Illumina MiSeq).
View Article and Find Full Text PDFTo address a knowledge gap about the grape berry mycobiome from Washington State vineyards, next-generation sequencing of the internal transcribed spacer region (ITS1) was used to identify native yeast and fungal species on berries of cultivar 'Cabernet Sauvignon' from two vineyards at veraison and harvest in 2015 and 2016. Four hundred fifty-six different yeast amplicon sequence variants (ASV), representing 184 distinct taxa, and 2467 non-yeast fungal ASV (791 distinct taxa) were identified in this study. A set of 50 recurrent yeast taxa, including Phaeococcomyces, Vishniacozyma and Metschnikowia, were found at both locations and sampling years.
View Article and Find Full Text PDFBackground: Microbes benefit plants by increasing nutrient availability, producing plant growth hormones, and protecting against pathogens. However, it is largely unknown how plants change root microbial communities.
Results: In this study, we used a multi-cycle selection system and infection by the soilborne fungal pathogen Rhizoctonia solani AG8 (hereafter AG8) to examine how plants impact the rhizosphere bacterial community and recruit beneficial microorganisms to suppress soilborne fungal pathogens and promote plant growth.
A temporal framework for mineral deposits is essential when addressing the history of their formation and conceptualizing genetic models of their origin. This knowledge is critical to understand how crust-forming processes are related to metal accumulations at specific time and conditions of Earth evolution. To this end, high-precision absolute geochronology utilising the rhenium-osmium (Re-Os) radiometric system in specific sulphide minerals is becoming a method of choice.
View Article and Find Full Text PDFActivation of the T cell receptor (TCR) results in binding of the adapter protein Nck (noncatalytic region of tyrosine kinase) to the CD3ϵ subunit of the TCR. The interaction was suggested to be important for the amplification of TCR signals and is governed by a proline-rich sequence (PRS) in CD3ϵ that binds to the first Src homology 3 (SH3) domain of Nck (Nck-SH3.1).
View Article and Find Full Text PDFAppl Environ Microbiol
February 2020
The Inland Pacific Northwest is one of the most productive dryland wheat production areas in the United States. We explored the bacterial and fungal communities associated with wheat in a controlled greenhouse experiment using soils from multiple locations to identify core taxa consistently associated with wheat roots and how land use history influences wheat-associated communities. Further, we examined microbial co-occurrence networks from wheat rhizospheres to identify candidate hub taxa.
View Article and Find Full Text PDFSoil microbes live within highly complex communities, where community composition, function, and evolution are the product of diverse interactions among community members. Analysis of the complex networks of interactions within communities has the potential to shed light on community stability, functioning, and evolution. However, we have little understanding of the variation in interaction networks among coevolved soil populations.
View Article and Find Full Text PDFBacteria and fungi are key components of virtually all natural habitats, yet the significance of fungal-bacterial inhibitory interactions for the ecological and evolutionary dynamics of specific bacterial and fungal populations in natural habitats have been overlooked. More specifically, despite the broad consensus that antibiotics play a key role in providing a fitness advantage to competing microbes, the significance of antibiotic production in mediating cross-kingdom coevolutionary interactions has received relatively little attention. Here, we characterize reciprocal inhibition among Streptomyces and Fusarium populations from prairie soil, and explore antibiotic inhibition in relation to niche overlap among sympatric and allopatric populations.
View Article and Find Full Text PDFEarthworms play important roles in no-till cropping systems by redistributing crop residue to lower soil horizons, providing macropores for root growth, increasing water infiltration, enhancing soil quality and organic matter, and stimulating nitrogen cycling. The soil impacted by earthworm activity, including burrows, casts, and middens, is termed the drilosphere. The objective of this study was to determine the effect of earthworms on soil microbial community composition in the drilosphere at different landscape slope positions.
View Article and Find Full Text PDFClass B biosolids are used in dryland wheat (Triticum aestivum L.) production in eastern Washington as a source of nutrients and to increase soil organic matter, but little is known about their effects on bacterial communities and potential for harboring human pathogens. Moreover, conservation tillage is promoted to reduce erosion and soil degradation.
View Article and Find Full Text PDFSoil edaphic characteristics are major drivers of fungal communities, but there is a lack of information on how communities vary with soil depth and landscape position in no-till cropping systems. Eastern Washington is dominated by dryland wheat grown on a highly variable landscape with steep, rolling hills. High-throughput sequencing of fungal ITS1 amplicons was used to characterize fungal communities across soil depth profiles (0 to 100 cm from the soil surface) among distinct landscape positions and aspects across a no-till wheat field.
View Article and Find Full Text PDFThe successional dynamics of root-colonizing microbes are hypothesized to be critical to displacing fungal pathogens that can proliferate after the use of some herbicides. Applications of glyphosate in particular, which compromises the plant defense system by interfering with the production of aromatic amino acids, are thought to promote a buildup of root pathogens and can result in a "greenbridge" between weeds or volunteers and crop hosts. By planting 2 to 3 weeks after spraying, growers can avoid most negative impacts of the greenbridge by allowing pathogen populations to decline, but with the added cost of delayed planting dates.
View Article and Find Full Text PDFGlyphosate is the most-used herbicide worldwide and an essential tool for weed control in no-till cropping systems. However, concerns have been raised regarding the long-term effects of glyphosate on soil microbial communities. We examined the impact of repeated glyphosate application on bulk and rhizosphere soil fungal communities of wheat grown in four soils representative of the dryland wheat production region of Eastern Washington, USA.
View Article and Find Full Text PDFThe Compact Linear Collider (CLIC) is an option for a future [Formula: see text] collider operating at centre-of-mass energies up to [Formula: see text], providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: [Formula: see text], 1.4 and [Formula: see text].
View Article and Find Full Text PDFTherapeutic approaches to fight Alzheimer's disease include anti-Amyloidβ (Aβ) antibodies and secretase inhibitors. However, the blood-brain barrier (BBB) limits the brain exposure of biologics and the chemical space for small molecules to be BBB permeable. The Brain Shuttle (BS) technology is capable of shuttling large molecules into the brain.
View Article and Find Full Text PDFIn the dryland Pacific Northwest wheat cropping systems, no-till is becoming more prevalent as a way to reduce soil erosion and fuel inputs. Tillage can have a profound effect on microbial communities and soilborne fungal pathogens, such as Rhizoctonia. We compared the fungal communities in long-term no-till (NT) plots adjacent to conventionally tilled (CT) plots, over three years at two locations in Washington state and one location in Idaho, US.
View Article and Find Full Text PDFGlyphosate is the most widely used herbicide worldwide and a critical tool for weed control in no-till cropping systems. However, there are concerns about the nontarget impacts of long-term glyphosate use on soil microbial communities. We investigated the impacts of repeated glyphosate treatments on bacterial communities in the soil and rhizosphere of wheat in soils with and without long-term history of glyphosate use.
View Article and Find Full Text PDFSoils suppressive to soilborne pathogens have been identified worldwide for almost 60 years and attributed mainly to suppressive or antagonistic microorganisms. Rather than identifying, testing and applying potential biocontrol agents in an inundative fashion, research into suppressive soils has attempted to understand how indigenous microbiomes can reduce disease, even in the presence of the pathogen, susceptible host, and favorable environment. Recent advances in next-generation sequencing of microbiomes have provided new tools to reexamine and further characterize the nature of these soils.
View Article and Find Full Text PDFThere are no data-supported recommendations on how proximal is too proximal for retrograde nailing (RGN). At six level 1 trauma centers, patients with femur fractures within the proximal one-third of the femur treated with RGN were included. This article describes a proximal segment capture ratio (PSCR) and nail segment capture ratio to evaluate RGN of proximal fractures.
View Article and Find Full Text PDFNetwork models of soil and plant microbiomes provide new opportunities for enhancing disease management, but also challenges for interpretation. We present a framework for interpreting microbiome networks, illustrating how observed network structures can be used to generate testable hypotheses about candidate microbes affecting plant health. The framework includes four types of network analyses.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
March 2016
Technological improvements have accelerated natural product (NP) discovery and engineering to the point that systematic genome mining for new molecules is on the horizon. NP biosynthetic potential is not equally distributed across organisms, environments, or microbial life histories, but instead is enriched in a number of prolific clades. Also, NPs are not equally abundant in nature; some are quite common and others markedly rare.
View Article and Find Full Text PDF