Purpose: To investigate the genetic cause of nonobstructive azoospermia (NOA).
Methods: We performed whole exome sequencing (WES) on the proband who had three relatives suffering from NOA. We used a list of candidate genes which have high expression level in testis and their mutations have been reported in NOA.
Neuroendocrine to nonneuroendocrine plasticity supports small cell lung cancer (SCLC) tumorigenesis and promotes immunogenicity. Approximately 20% to 25% of SCLCs harbor loss-of-function (LOF) mutations. Previous studies demonstrated that NOTCH functions as a SCLC tumor suppressor, but can also drive nonneuroendocrine plasticity to support SCLC growth.
View Article and Find Full Text PDFChromosomal duplications are associated with a large group of human diseases that arise mainly from dosage imbalance of genes within the rearrangements. Phenotypes range widely but are often associated with global development delay, intellectual disability, autism spectrum disorders, and multiple congenital abnormalities. How different contiguous genes from a duplicated genomic region interact and dynamically affect the expression of each other remains unclear in most cases.
View Article and Find Full Text PDFAm J Med Genet C Semin Med Genet
September 2021
Microdeletion syndromes (MSs) are a heterogeneous group of genetic diseases that can virtually affect all functions and organs in humans. Although systems biology approaches integrating multiomics and database information into biological networks have expanded our knowledge of genetic disorders, cytogenomic network-based analysis has rarely been applied to study MSs. In this study, we analyzed data of 28 MSs, using network-based approaches, to investigate the associations between the critical chromosome regions and the respective underlying biological network systems.
View Article and Find Full Text PDFMore than 90% of small cell lung cancers (SCLCs) harbor loss-of-function mutations in the tumor suppressor gene The canonical function of the gene product, pRB, is to repress the E2F transcription factor family, but pRB also functions to regulate cellular differentiation in part through its binding to the histone demethylase KDM5A (also known as RBP2 or JARID1A). We show that KDM5A promotes SCLC proliferation and SCLC's neuroendocrine differentiation phenotype in part by sustaining expression of the neuroendocrine transcription factor ASCL1. Mechanistically, we found that KDM5A sustains ASCL1 levels and neuroendocrine differentiation by repressing NOTCH2 and NOTCH target genes.
View Article and Find Full Text PDFFocal amplification of chromosome 1q23.3 in patients with advanced primary or relapsed urothelial carcinomas is associated with poor survival. We interrogated chromosome 1q23.
View Article and Find Full Text PDFWe studied by a whole genomic approach and trios genotyping, 12 de novo, nonrecurrent small supernumerary marker chromosomes (sSMC), detected as mosaics during pre- or postnatal diagnosis and associated with increased maternal age. Four sSMCs contained pericentromeric portions only, whereas eight had additional non-contiguous portions of the same chromosome, assembled together in a disordered fashion by repair-based mechanisms in a chromothriptic event. Maternal hetero/isodisomy was detected with a paternal origin of the sSMC in some cases, whereas in others two maternal alleles in the sSMC region and biparental haplotypes of the homologs were detected.
View Article and Find Full Text PDFAcrocallosal syndrome (ACLS) is an autosomal recessive neurodevelopmental disorder caused by KIF7 defects and belongs to the heterogeneous group of ciliopathies related to Joubert syndrome (JBTS). While ACLS is characterized by macrocephaly, prominent forehead, depressed nasal bridge, and hypertelorism, facial dysmorphism has not been emphasized in JBTS cohorts with molecular diagnosis. To evaluate the specificity and etiology of ACLS craniofacial features, we performed whole exome or targeted Sanger sequencing in patients with the aforementioned overlapping craniofacial appearance but variable additional ciliopathy features followed by functional studies.
View Article and Find Full Text PDFChromosomal rearrangements are essential events in the pathogenesis of both malignant and nonmalignant disorders, yet the factors affecting their formation are incompletely understood. Here we develop a zinc-finger nuclease translocation reporter and screen for factors that modulate rearrangements in human cells. We identify UBC9 and RAD50 as suppressors and 53BP1, DDB1 and poly(ADP)ribose polymerase 3 (PARP3) as promoters of chromosomal rearrangements across human cell types.
View Article and Find Full Text PDFSchinzel-Giedion syndrome (SGS) is a rare developmental disorder characterized by multiple malformations, severe neurological alterations and increased risk of malignancy. SGS is caused by de novo germline mutations clustering to a 12bp hotspot in exon 4 of SETBP1. Mutations in this hotspot disrupt a degron, a signal for the regulation of protein degradation, and lead to the accumulation of SETBP1 protein.
View Article and Find Full Text PDFFibromuscular dysplasia (FMD) is a heterogeneous group of non-atherosclerotic and non-inflammatory arterial diseases that primarily involves the renal and cerebrovascular arteries. Grange syndrome is an autosomal-recessive condition characterized by severe and early-onset vascular disease similar to FMD and variable penetrance of brachydactyly, syndactyly, bone fragility, and learning disabilities. Exome-sequencing analysis of DNA from three affected siblings with Grange syndrome identified compound heterozygous nonsense variants in YY1AP1, and homozygous nonsense or frameshift YY1AP1 variants were subsequently identified in additional unrelated probands with Grange syndrome.
View Article and Find Full Text PDFIn prostate cancer, the development of castration resistance is pivotal in progression to aggressive disease. However, understanding of the pathways involved remains incomplete. In this study, we performed a high-throughput genetic screen to identify kinases that enable tumor formation by androgen-dependent prostate epithelial (LHSR-AR) cells under androgen-deprived conditions.
View Article and Find Full Text PDFThe genetic basis of congenital glaucoma with systemic anomalies is largely unknown. Whole exome sequencing (WES) in 10 probands with congenital glaucoma and variable systemic anomalies identified pathogenic or likely pathogenic variants in three probands; in two of these, a combination of two Mendelian disorders was found to completely explain the patients' features whereas in the third case only the ocular findings could be explained by the genetic diagnosis. The molecular diagnosis for glaucoma included two cases with compound heterozygous or homozygous pathogenic alleles in CYP1B1 and one family with a dominant pathogenic variant in FOXC1; the second genetic diagnosis for the additional systemic features included compound heterozygous mutations in NPHS1 in one family and a heterozygous 18q23 deletion in another pedigree.
View Article and Find Full Text PDFCurrent therapies for sarcomas are often inadequate. This study sought to identify actionable gene targets by selective targeting of the molecular networks that support sarcoma cell proliferation. Silencing of asparagine synthetase (ASNS), an amidotransferase that converts aspartate into asparagine, produced the strongest inhibitory effect on sarcoma growth in a functional genomic screen of mouse sarcomas generated by oncogenic Kras and disruption of Cdkn2a.
View Article and Find Full Text PDFHigh-grade serous ovarian carcinoma (HGSOC) is the most common and aggressive form of epithelial ovarian cancer, for which few targeted therapies exist. To search for new therapeutic target proteins, we performed an in vivo shRNA screen using an established human HGSOC cell line growing either subcutaneously or intraperitoneally in immunocompromised mice. We identified genes previously implicated in ovarian cancer such as AURKA1, ERBB3, CDK2, and mTOR, as well as several novel candidates including BRD4, VRK1, and GALK2.
View Article and Find Full Text PDFBackground: Few patients with interstitial deletions in the distal long arm of chromosome 14 have been reported, and these patients showed rather indistinct features, including growth and mental retardation and phenotypic alterations.
Results: We describe a de novo 14q interstitial deletion in a 6-year-old boy with dysmorphic facial traits such as hypertelorism, short and narrow palpebral fissures, broad nose with anteverted nostrils, long philtrum, thin upper lip with cupid's bow, prominent and everted lower lip, mildly low-set ears, as well as moderate developmental delay and mild mental retardation. Array-CGH mapped the deletion to the region 14q24.
The past decades have seen a remarkable shift in the demographics of childbearing in Western countries. The risk for offspring with chromosomal aneuploidies with advancing maternal age is well known, but most studies failed to demonstrate a paternal age effect. Retrospectively, we analyzed two case data sets containing parental ages from pre- and postnatal cases with trisomies 21, 13 and 18.
View Article and Find Full Text PDFCancer cells that express oncogenic alleles of RAS typically require sustained expression of the mutant allele for survival, but the molecular basis of this oncogene dependency remains incompletely understood. To identify genes that can functionally substitute for oncogenic RAS, we systematically expressed 15,294 open reading frames in a human KRAS-dependent colon cancer cell line engineered to express an inducible KRAS-specific shRNA. We found 147 genes that promoted survival upon KRAS suppression.
View Article and Find Full Text PDFTargeting HER2 with antibodies or small molecule inhibitors in HER2-positive breast cancer leads to improved survival, but resistance is a common clinical problem. To uncover novel mechanisms of resistance to anti-HER2 therapy in breast cancer, we performed a kinase open reading frame screen to identify genes that rescue HER2-amplified breast cancer cells from HER2 inhibition or suppression. In addition to multiple members of the MAPK (mitogen-activated protein kinase) and PI3K (phosphoinositide 3-kinase) signaling pathways, we discovered that expression of the survival kinases PRKACA and PIM1 rescued cells from anti-HER2 therapy.
View Article and Find Full Text PDFDown syndrome confers a 20-fold increased risk of B cell acute lymphoblastic leukemia (B-ALL), and polysomy 21 is the most frequent somatic aneuploidy among all B-ALLs. Yet the mechanistic links between chromosome 21 triplication and B-ALL remain undefined. Here we show that germline triplication of only 31 genes orthologous to human chromosome 21q22 confers mouse progenitor B cell self renewal in vitro, maturation defects in vivo and B-ALL with either the BCR-ABL fusion protein or CRLF2 with activated JAK2.
View Article and Find Full Text PDFLong-term observations of individuals with the so-called Langer-Giedion (LGS) or tricho-rhino-phalangeal type II (TRPS2) are scarce. We report here a on follow-up of four LGS individuals, including one first described by Andres Giedion in 1969, and review the sparse publications on adults with this syndrome which comprises ectodermal dysplasia, multiple cone-shaped epiphyses prior to puberty, multiple cartilaginous exostoses, and mostly mild intellectual impairment. LGS is caused by deletion of the chromosomal segment 8q24.
View Article and Find Full Text PDF