We demonstrate record ∼0.9% efficiencies for optical conversion to narrowband (<1% relative bandwidth) terahertz (THz) radiation by strongly cascaded difference frequency generation. These results are achieved using a novel, to the best of our knowledge, laser source, customized for high efficiencies, with two narrow spectral lines of variable separation and pulse duration (≥250 ps).
View Article and Find Full Text PDFPreventing bites from undetected ticks through bathing practices would benefit public health, but the effects of these practices have been researched minimally. We immersed nymphal and adult hard ticks of species common in the eastern United States in tap water, using temperatures and durations that are realistic for human hot bathing. The effect of (a) different skin-equivalent surfaces (silicone and pig skin), and (b) water temperature was tested on Amblyomma americanum, Dermacentor variabilis and Ixodes scapularis nymphs.
View Article and Find Full Text PDFWe demonstrate multi-cycle terahertz (MC-THz) generation in a 15.5 mm long periodically poled rubidium (Rb)-doped potassium titanyl phosphate (Rb:PPKTP) crystal with a poling period of 300 µm. By cryogenically cooling the crystal to 77 K, up to 0.
View Article and Find Full Text PDFWe generate temporally modulated optical pulses with a beat frequency of 255 GHz, a duration of 360 ps, and a repetition rate of 2 MHz. The temporal envelope, beat frequency, and repetition rate are computer-programmable. A frequency comb serves as a phase and frequency reference for the locking of two laser lines.
View Article and Find Full Text PDFWe investigate a regime of parametric amplification in which the pump and signal waves are spectrally separated by only a few hundreds of GHz frequency - therefore resulting in a sub-THz frequency idler wave. Operating in this regime we find an optical parametric amplifier (OPA) behavior which is highly dissimilar to conventional OPAs. In this regime, we observe multiple three-wave mixing processes occurring simultaneously which results in spectral cascading around the pump and signal wave.
View Article and Find Full Text PDFWe demonstrate a compact and robust Yb-fiber master-oscillator power-amplifier system operating at 1018 nm with 2.5-nm bandwidth and 1-ns stretched pulse duration. It produces 87-W average power and 4.
View Article and Find Full Text PDFWe demonstrate a pre-chirp managed amplification (PCMA) system that is based on two stages of core-pumped, polarization maintaining (PM) fiber amplifiers. It produces output pulses with <65 fs duration and >10 nJ pulse energy from single-mode fibers. Tailoring of the spectra in the amplification chain enables pulse compression to near-perfect transform limited pulses (Strehl-ratio >0.
View Article and Find Full Text PDFWe generate narrowband terahertz (THz) radiation in periodically poled lithium niobate (PPLN) crystals using two chirped-and-delayed driver pulses from a high-energy Ti:sapphire laser. The generated frequency is determined by the phase-matching condition in the PPLN and influences the temporal delay of the two pulses for efficient terahertz generation. We achieve internal conversion efficiencies up to 0.
View Article and Find Full Text PDFThe use of laser pulse sequences to drive the cascaded difference frequency generation of high energy, high peak-power and multi-cycle terahertz pulses in cryogenically cooled (100 K) periodically poled Lithium Niobate is proposed and studied. Detailed simulations considering the coupled nonlinear interaction of terahertz and optical waves (or pump depletion), show that unprecedented optical-to-terahertz energy conversion efficiencies > 5%, peak electric fields of hundred(s) of mega volts/meter at terahertz pulse durations of hundred(s) of picoseconds can be achieved. The proposed methods are shown to circumvent laser induced damage limitations at Joule-level pumping by 1µm lasers to enable multi-cycle terahertz sources with pulse energies >> 10 milli-joules.
View Article and Find Full Text PDFA highly efficient, practical approach to high-energy multi-cycle terahertz (THz) generation based on spectrally cascaded optical parametric amplification (THz-COPA) is introduced. Feasible designs are presented that enable the THz wave, initially generated by difference frequency generation between a narrowband optical pump and optical seed (0.1-10% of pump energy), to self-start a cascaded (or repeated) energy downconversion of pump photons in a single pass through a single crystal.
View Article and Find Full Text PDFWe present an efficiency scaling study of optical rectification in cryogenically cooled periodically poled lithium niobate for the generation of narrowband terahertz radiation using ultrashort pulses. The results show an efficiency and brilliance increase compared to previous schemes of up to 2 orders of magnitude by exploring the optimal pump pulse format at around 800 nm, and reveal saturation mechanisms limiting the conversion efficiency. We achieve >10⁻³ energy conversion efficiencies, μJ-level energies, and bandwidths <20 GHz at ∼0.
View Article and Find Full Text PDFA model for terahertz (THz) generation by optical rectification using tilted-pulse-fronts is developed. It simultaneously accounts for in two spatial dimensions (2-D) (i) the spatio-temporal variations of the optical pump pulse imparted by the tilted-pulse-front setup, (ii) the nonlinear coupled interaction of THz and optical radiation, (iii) self-phase modulation and (iv) stimulated Raman scattering. The model is validated by quantitative agreement with experiments and analytic calculations.
View Article and Find Full Text PDFWe demonstrate a pre-chirp managed Yb-doped fiber laser system that outputs 75 MHz, 130 W spectrally broadened pulses, which are compressed by a diffraction-grating pair to 60 fs with average powers as high as 100 W. Fine tuning the pulse chirp prior to amplification leads to high-quality compressed pulses. Detailed experiments and numerical simulation reveal that the optimum pre-chirp group-delay dispersion increases from negative to positive with increasing output power for rod-type high-power fiber amplifiers.
View Article and Find Full Text PDFWe report on efficient generation of millijoule-level, kilohertz-repetition-rate few-cycle laser pulses with radial polarization by combining a gas-filled hollow-waveguide compression technique with a suitable polarization mode converter. Peak power levels >85 GW are routinely achieved, capable of reaching relativistic intensities >10(19) W/cm2 with carrier-envelope-phase control, by employing readily accessible ultrafast high-energy laser technology.
View Article and Find Full Text PDFWien Med Wochenschr
December 2013
In the aging population of Germany the consequences of Dementia for the society and the health care sector are complex and solutions require a multidisciplinary approach. The aim of the two-day interdisciplinary expert conference was to consider dementia from different perspectives, to identify dementia-related problems and to discuss integrative solutions under consideration of complementary therapies. In different working groups the experts developed solutions and recommendations with regards to political need, health care and future research priorities.
View Article and Find Full Text PDFBackground: In Germany the number of inhabitants with dementia is expected to increase from 1.2 million at present to 2.3 million in 2050.
View Article and Find Full Text PDFWe derive solutions for radially polarized Bessel-Gauss beams in free-space by superimposing decentered Gaussian beams with differing polarization states. We numerically show that the analytical result is applicable even for large semi-aperture angles, and we experimentally confirm the analytical expression by employing a fiber-based mode-converter.
View Article and Find Full Text PDFUnlabelled: Autologous tissue transfer, in addition to replacing tissue that was lost during injury or surgery, offers women an excellent option to improve cosmetic appearance and self-confidence following mastectomy due to breast cancer. However, flap necrosis is a complication in obese patients undergoing this procedure. We created a mouse model to study the flap-related complications that leads to decreased flap survival in autologous breast reconstruction.
View Article and Find Full Text PDFWe both theoretically and experimentally investigate the optimization of femtosecond Yb-doped fiber amplifiers (YDFAs) to achieve high-quality, high-power, compressed pulses. Ultrashort pulses amplified inside YDFAs are modeled by the generalized nonlinear Schrödinger equation coupled to the steady-state propagation-rate equations. We use this model to study the dependence of compressed-pulse quality on the YDFA parameters, such as the gain fiber's doping concentration and length, and input pulse pre-chirp, duration, and power.
View Article and Find Full Text PDFWe report on a novel class of higher-order Bessel-Gauss beams in which the well-known Bessel-Gauss beam is the fundamental mode and the azimuthally symmetric Laguerre-Gaussian beams are special cases. We find these higher-order Bessel-Gauss beams by superimposing decentered Hermite-Gaussian beams. We show analytically and experimentally that these higher-order Bessel-Gauss beams resemble higher-order eigenmodes of optical resonators consisting of aspheric mirrors.
View Article and Find Full Text PDFWe introduce Bessel-Gauss beam enhancement cavities that may circumvent the major obstacles to more efficient cavity-enhanced high-field physics such as high-harmonic generation. The basic properties of Bessel-Gauss beams are reviewed and their transformation properties through simple optical systems (consisting of spherical and conical elements) are presented. A general Bessel-Gauss cavity design strategy is outlined, and a particular geometry, the confocal Bessel-Gauss cavity, is analyzed in detail.
View Article and Find Full Text PDFWe demonstrate polarization-sensitive measurement of the modal content of waveguides by generalizing the classic rotating wave-plate-based polarimeter to wide-field optical low-coherence interferometry. The spatial phases of the modes are retrieved with principal component analysis. By applying this polarization-sensitive cross-correlation (C2) imaging technique to the characterization of a few-mode fiber, we reveal that different modes experience distinct bend-induced birefringence in optical fibers.
View Article and Find Full Text PDFWe demonstrate a method that enables reconstruction of waveguide or fiber modes without assuming any optical properties of the test waveguide. The optical low-coherence interferometric technique accounts for the impact of dispersion on the cross-correlation signal. This approach reveals modal content even at small intermodal delays, thus providing a universally applicable method for determining the modal weights, profiles, relative group-delays and dispersion of all guided or quasi-guided (leaky) modes.
View Article and Find Full Text PDFDue to the role of the calcaneus in weight bearing, soft tissue coverage along with proper reduction of the fracture is the treatment following open calcaneal injury. Intra-articular calcaneal fractures present a very difficult management problem, as the lack of soft tissue and the intricate vascularity in this area pose a risk of complications. Coverage with local and free muscle flaps following excision of infected structures is a common approach for the treatment of chronic osteomyelitis.
View Article and Find Full Text PDF